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Abstract 

A 61-stare truth model is developed for the aircraft to satellite 

tracking problem.  The equations for the Extended Kaiman liltcr are 

described and the truth model is examined and simplified to give a 

12-state reduced order filter model of the system.  Using the method 

of Covariance Analysis which is described, the performance of the 12- 

state filter model against the 61-state truth model is evaluated with 

the dynamics profile of a high altitude aircraft tracking a near earth 

satellite in a circular polar orbit.  The measurement equations for the 

truth model are adjusted over a range of measuring instrument precision 

and the filter model reevaluated.  The resultant tracking accuracies 

are discussed. 
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HIGH ACCL'Rv\CY  MRCRAFf TO  SATELLITE 
TRACui;,'c UGII.'G I;XTI;;,'DED KALMAN 

FILTER 

I;:TRODUCTION 

Statcnicnt of the Problem 

Given two acceleratinp vehicles, thnre are many situations in vhlch 

it is necessary to track one vehicle from the other with a high decree of 

accuracy.  In general, such a system cannot be modeled deterministlcallv 

and stochastic estimation techniques must te employed. 

This thesis addresses the problem of tracking a satellite from an 

aircraft.  Again, this problem is varied and might include tracking of 

navigation satellites from long range transport aircraft or tracking of 

low orbit satellites from high altitude aircraft using laser devices. 

The latter will be investigated in particular.  Ideally, the satellite 

would transmit a beacon signal to facilitate tracking but in practice 

this cannot be guaranteed.  For the purposes of this report, the satel- 

lite is assumed to be completely passive. 

Various methods are available for formulating and solving the 

tracking problem.  One such method which uses an Extended Kaiman Filter 

to provide the system state estimate is investigated in detail. 

c. 

Objectives of the Study 

The primary objective of the study will be to determine the feasi- 

bility of using a reduced order (simplified) system model to propagate 

the system state.  Propagation will be carried out using the Extended 

Kaiman Filter.  To investigate feasibility, the following breakdown of 

1 
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the probler. will be followed: 

1. Develop the full truth model rcpresentinp true system 

performance. 

2. Generate a trackinp, prcfil? representinf. a typical 

tracking 'pass'. 

3. Using the truth model froir 1. and the trackinp, profile 

from 2. carry out a covariance analysis with a reduced 

order system model. 

A.  Adjust the reduced order model until satisfactory 

performance is ojtained. 

Thus, given a system truth model, a reduced order system model will 

be found and tested using the covariance analysis.  A secondary objective 

will be to modify the system truth model and correspondingly modifv the 

reduced order system model and repeat the tests of the reduced order 

model.  The modifications will involve changes to the measuring devices 

to represent increased or degraded quality.  This will be done to deter- 

mine the quality of measuring instrument reauired in practice to achieve 

some specified level of tracking performance. 

Assumptions and Limitations 

The system investigated here is in fact non-linear so that the bisic 

caiman Filter cannot be used to propagate state estimate and associated 

covariance.  Various methods are avialable for handling non-linear oro- 

blens among which is the Extended Kalmar Filter.  This formulation,in 

common with most methods for handling non-linear problemSjassumes that 

the non-linear system can adequately be represented by a linear system 

about some trajectory.  That is, deviations from this trajectory can be 

handled using linear methods.  The assumptions inherent in the lineari- 

2 

■ ■■:.  ■■-■:  ■   ■■   ■:       ■■■   ■       .     ■   ■ ■ ■   ■   -    ■■ -■■   ■-'    ■    ■   •■    ■-■•■■■ LJ Lii ^—  ±. i - L_^ ■   ■■'■.-- I 



^!Sf*'?i*w-'*-:Ttrr!,\ P '•'. '"-T* Tvs-^'-v*1 mp-^ ^v^n^y^ftfj- f"\'g'"T? -^ ytii ■ t ')y-*»v«?wy?»lW-W*U'.f ""finiTT' W fyf^J" ft "> ■" ■T'J~-"r ^ ■if*'!'- 

GA/EE/74-3 

~^ 

c 

zation process will be des^.-Luod in detail under section III which des- 

cribes the Extended Kaiman Filter. 

This study atteiupts to find a simplified reduced order system model 

which will adequately describe the true system performance.  For a true 

linear system, the covanancc analysis is complete In that it accurately 

describes the filter performance.  However, in applying linear techniques 

to non-linear systems, it is sometimes possible to obtain apparently 

good performance when in reality the performance is bad.  This possibility 

is usually overcome by carrying out a 'Monte-Carlo' system analysis in 

addition to the covariance analysis.  This would be desireable for the 

problem but will not be done in this study. 

Only one aircraft/satellite dynamics profile is investigated in this 

study.  The profile chosen uses a low orbit satellite in a polar orbit 

tracked by an aircraft flying east/west.  This was chosen to represent as 

near as possible one of the worst case situations in which the satellite 

passes almost directly overhead.  Clearly, confidence in the models would 

improve if several representative profiles are tested. Also, the tracking 

state equations are modeled in the line of sight coordinate system.  The 

equations could have been modeled entirely in inertial coordinates or 

aircraft coordinates possibly with different results. 

It is assumed that the tracking antenna is controlled by some closed 

loop control system.  The dynamics of such a system have not been incor- 

porated into the models.  In fact, the system assumes that deviations 

from nominal can instantaneously be corrected at regular intervals. 

Finally, it will be assumed that the coordinate transformation matrix 

from the tracking coordinate frame to the inertia?, non-rotating earth 

centered coordinate frame is known.  This assumption implies that the 

3 
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tracker orientation relative to the inertial coordinate frame is known. 

For the purposes of this study, it will be further assmned that the tracker 

elevation axis always lies in the inertial X-Y plane (See Fig. 1 Section 

II).  Thus an inertial reference must be available on board the aircraft. 

The problem could be considered by introducing a body (aircraft) coordi- 

nate system and assuming that the tracker orientation relative to the 

body is known.  It would then be necessary to assume also that the body 

orientation relative to the inertial coordinate system is known.  The 

simplest assumption which implies no loss of generality is the first. 

That is, the tracker-orientation relative to the inertial coordinate 

frame is known. 
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II.  SYSTEM MODELING 

c 

Physical DescjlpClon of the System 

Physically, the system consists of a satellite and an aircraft 

equipped with some type of satellite tracking device, typically a high 

resolution radar or laser.  The tracking device is equipped with three 

rate gyros which measure Che tracker inertial angular velocity in thr^e 

components.  Three accelerometers measure the three components of spe- 

cific force of the tracker origin.  Some control system is available to 

correct the estimated tracker angular deviations.  These estimates will 

be found using the Extended Kaiman Filter and the control system will 

have the capability of instantaneous corrections.  The tracking device 

is able to measure the satellite range, range rate and small angular 

deviations of the tracker from the true line of sight. The measurements 

are all assumed to be imperfect. The nature of the corrupting noises 

will be discussed later. 

The tracker depends for its operation on the availability of a 

reference coordinate system. This could be the aircraft to body system 

assuming the orientation is known or the inertial earth centered coor- 

dinate system.  For this problem, it is assumed that the tracker base 

always lies in a plane parallel to the inertial X-Y plane (see Fig. 1, 

next page).  In practice this would be accomplished with a closed loop con- 

trol system using some Inertial reference sensing device. Note that the 

possibility that the tracker base is translating or accelerating is not 

excluded. 

Target State Equations 

The target state aquations are expressed in the geocentric - equa- 

torial non-rotating coordinate system illustrated 1^ Fig. 1. The state 

^ ae«jl »jMV^JWafMgjtf^iMtJWJirn tl I 
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r equations are: 

c 

Ll x4 

X2  =  X5 

X3 - x6 

X^ -= Agj + Arij + Asj + Amj + Apj + Wj (2-1) 

X5 = Ag2 + Ad2 + As2 + A'n2 + Ap2 + W2 

X6 = Ap)3 + Ad3 + As 3 + Am3 + AP3 + W3 

Xj, X2, X3 - represent the target inertial position from earth center. 

X^, X5, X6 - represent the target inertial velocity 

Agi, Ag2, Ag3 - are the gravitational forces along the Xj, X2, X3directions 

Adj, Ad2, Ad3 - are the forces due to aerodynamic drag. 

Asi, Ar2. AS3 - are the solar perturbations (gravitational). 

Ami, Am2» Am3 - are the lunar perturbations (gravitational). 

Api, Ap2, Ap3 - are the perturbations due to solar pressure. 

Wi, W2, W2 - are zero mean independent Gaussian white noises added to 

model unknown perturbations and to account for approxima- 

tions in the above terms. 

Appendix A indicates the method of obtaining the earth's gravita- 

tional attracting forces Agi, Ag2, Ag3 and the method of finding the 

second partials of the gravity gradient for the earth.  These will be 

required during the state equation linearization process. 

Force Due to Drag 

The drag perturbational accelerations are modeled as follows: 

Ad is the drag vector in inertial non-rotating coordinates 

r 
jr  is the inertial position vector 

from earth center to target 
Xi 

X2 

x. 

r   ■ -- ... I,' MiaigaaiMagiMi^atiiMiM* 
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T       is   the  inertial veJoclty vector 
of the target 

Xu 

X5 

X. 

Then Ad = 

where; 

2 P B Va r, (2-2) 

o = 

p0 = 

ß = 

h = 

n _ 

0 

atmospheric density modeled as:  p = p e 
-ß h 

mean sea level atmoshperic density 

altitude atmospheric density decay rate 

(X!2 + X2
2 + Xa2)^ -  R 

o 

mean earth radius 

magnitude of the vehicle velocity relative to the 

rotating atmosphere.  V  = 

earth rotation rate, and by the law of Coriolis: 

Xi* + VJE X2 

X5 - \-rE  Xl  = Va (2-3) 

B - vehicle ballistic coefficient 

WE = 

In general, the ballistic properties of the vehicle will be unknown. 

However, the ballistic coefficient B will not change with time and can 

therefore oe modeled stochastically as a random bias.  Such a model 

implies 100% correlation with time.  B is therefore represented by the 

system state X7 with the state equation 

X? (2-4) 

( 

Thus appropriate choice of an initial condition for X7 can be made to 

adequately model a range of vehicle types. 

8 
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Sun and Moon Gravltatlonal Verturhatlons 

The sun and moon perturblnp, acceleration vectors are defined 

respectively as: 

^s     = 

Asi 

As 2 

As 3 

An    = 

Ami 

A1712 

Ani3 

For the pirposes of this report, the sun and moon are considered 

stationary in space relative to the vehicle and earth.  This assumption 

is valid since the time for a particular pass for a low orbit satellite 

will be of the order of minutes only. 

If the sun and moon have position vectors relative to the non- 

rotating inertial coordinate system of: 

Xs 
Ys 
Zs 

and Xm 
Ym 
im 

respectively 

then the perturbational acceleration vectors As and Am will be given by: 

As = Jo 
Xs - X 

rvs" 

Ys - X, 

rvs' 

Zs - X. 

'Vs 

Xs 

rs; 

Ys 

rs- 

Zs 

rs- 
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and 

c 

where 

(Xm    -    Xj) 

Am 

-vm 

Xm 

ITTJ- 

(Ym    -    X,) U       _    Ym 

rvm3 

(Zm    -    X3) 

L vm 

mr 

Zm 

rm- 

Xvm    ■=    Xm    -    Xj 

^   B   Ym   -   x2 

Zvm    "    Z»    -    X3 

Xvs    =    Xs    -    Xj 

Yvs    =    Ys    -    X, 

Zvs    =    Zs    -    X: 

rvs    =    yXvs2    +    Yvs2    +    Zvs2 

rvm    ,:r    \Xvm2    +    Yvm2    +    Z^2 

rrn 

(2-6) 

JXm2 + Ym2 + Zm2 

rs » JXs2 + Ys2 + Zs2 

Solar Pressure The force acting due to solar pressure is modeled in a 

simple way using the relationship: 

10 
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( 

Apj  -  -K S 21X5 
rvs 

Ap0  - -K S Xvs (2_7) 

Ap, = -K S ^£ 
J        rvs 

K is a proportionality constant of 4.5 x 10" m/sec  (Ref. 1) and 

S is the solar pressure coefficient.  This latter coefficient depends 

directly on the vehicle surface area presented towards the sun and in- 

versely on the mass of the vehicle.  Again, no information Is available 

about the vehicle and S is again modeled as a random bias Xg.  The sta'-e 

equation for Xg is therefore: 

X8 = 0 (2-8) 

and appropriate choice of the initial condition tor X will adequately 

model the range of vehicles of primary interest. 

Tracker State Equations 

Fig. 2 illustrates the geometry of the typical tracker.  The table 

is aligned with a reference plane which in this case will be the inertial 

plane.  The tracker is thus restricted to rotate about the azimuth ver- 

tical axis and the elevation axis.  The vertical axis of rotation will 

always stay aligned with the inertial vertical axis while the elevation 

axis will be restricted to lie in the inertial horizontal plane only. 

Note that the tracker is configured such that the tracker x^ axis points 

along the antenna center line, while the tracker y-p axis points out 

through the tracker elevation axis and therefore always lies in the 

plane of the table as shown.  The tracker Zj  axis forms the third vec- 

tor in an orthogonal system. 

11 
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Fig.   2    Tracking Antenna Configuration 

r 
Iig. 3 shows the relation between the inertial X, Y, Z frame, 

which is an earth centered non-rotating frame, and the tracker x ^ y ^ 

zj frame. 

Fig. 3 Inertial and Tracker Coordinate Frames 

From the above figure it can be seen that the tracker frame orientation 

is obtained via two Euler angle rotations 6 and f  in the azimuth and 

elevation directions respectively from the inertial frame.  Denoting 

12 
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tlic  inortlal  frame  as   t!ie  I-frame  and  the  tracking   frame  as   the  T-frame 

T 
v/e define  the  coordinate   transfornation matrix  C     as  ttie  trinsformaMon 

matrix  from 1-coordinates  into T-coordinates,   then: 

cos e sin e 0 

sin  6 cos e 0 

0 0 1 

cos  ij)       0       -sir. i 

0 10 

sin  c|)       0 cos $ 

cos G  cos tf  sin 6 cos 4) -sin $ 

-sin 6      cos 6       0 

cos 6  sin 4>    sin 6 sin *  cos <J) 

(2-9) 

Now, the Euler rotation angles 9 and ^ can he determined by con- 

sidering the geometry of the tracking problem.  Let the relative position 

vector of the target from the aircraft be expressed in inertial X, Y, Z 

coordinates as R : 

Defining R as the relative position vector expressed 

T 
in inertial I-coordlnates and R as the relative posi- 

tion vector expressed in tracker T-coordinates then: 

R1 

R 

and R T  I CI Ü (2-10) 

RT = Rx cos 6 cos  i> +  R sin 6  cos <+• - R sin $ 
1 JLi 

-Rx sin 6 + R^ cos fl 

Rx cos 6  sin * -l- R^ sin 6 sin  $ +  Rz coi 

13 
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If we define the range from aircraft to target as tlie scalar variable R, 

T then R =  the X-component of the vector R and the Y and Z components 

are both zero for perfect tracking. 

Thus 

R = R^ cos 8 cos (J) + Ry sin 6 cos $ f R- sin $ 

And 

-Rx sin 6 + Ry cos 

tan 6 

is determined as follows: 

6 = arc tan (Ry/R^ if Rx > 0, Ry arbitrary 

= arc tan (^/R^ + TT  if Rx < 0, Ry arbitrary 

Similarly, 

Rx cos 6 sin $    + Ry sin G sin $    +    K^    cos $ 

but 

R. X 

tan 6 
+ Ry + R^ 

tan $  sin 0 

(2-12) 

sin 6  = u 
(Rx2 + RyZ)-

5 

So (Rx
2 + Ry2) + RZ • (Rx2 + Ry2)' 

Rv RY •  tan (j) 

C 

tan ^ 
(Rx + Ry^) 

2^ 

14 

(2-13) 
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Thus far, the relationsliip between the tracker and inertlal 

coordinate frames has been established and it has been shown that 

the coordinate tranformatlon matrix is dependent entirely on the 

relative position vector from aircraft to target expressed in inertlal 

coordinates. 

In practice, perfect tracking, in which the xx vector aligns per- 

fectly with the target line of sight, will not be possible.  The tracker 

frame will in fact be slightly misaligned from the true line of sight 

coordinate system denoted LS.  This system has the. x-g axis pointing 

directly towards the target and is related to the target coordinate 

system as shown by Fig. A. 

c Fig. 4 Target and Line of Sight Coordinate Frames 
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r O-'TC again, the two frames can be coincided through tvo small Euler 

rotations 6G and 6n.  6n rotates the LS - frame about the tracker 

z axis and 6c rotates the LS - frame about the line of sight yT „ axis, 

LS 
The coordinate transformation matrix Cj transforms a vector from T - 

coordinates into LS - coordinates and: 

LS 
CT =   cos On cos 6e  sin ön cos 6e  -sin 6c 

-sin 6n cos 6n 0 

cos 6n  sin 6e  sin 6n sin 6G   cos 6c 

For near-perfect tracking in which the angles 6c and 6n are small, 

it is possible to make the small angle assumptions: 

cos 6n -  cos 6G = 1 

then: 

sin 6n -     6n, sin 6c -    ÖE 

6e6n = 0 

CT 1   6n  -6e 

-6n   1   0 

6c   0   1 

(2-14) 

In practice, the tracking device will be canable of providing 

measurement information concerning the two small angles 6c and 6n; 

hence it is necessary to establish the state equations expressing the 

time rate of change of the two angles. 

The motion between the T-rotating frame and the LS-rotating frame 

16 
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is  characterized by the following differential equation:  (Pef. 7) 

CLS    CLS  LS     T CLs 
(2-15) 

where './, ^  and !.'„ are   tlic  skew syrmetric matrices  defined  as 

W 
LS 0LS. 

ÜLS- 

:
U

LSY     
wic 

■as. 

0 "'"LS, 

"T 

0 -tD.p 

and the elements of these matrices represent the angular velocities 

about the particular axes subscripted. 

.Now, the two vectors: 

LS 
'"LS "-'LS, 

ULS^ 

XS 
Z-i 

and   w 

WT. 

L 'zJ 

are inertial angular velocity vectors expressed in line of sipht LS 

coordinates and tracker T - coordinates respectively. 

From (2-15), 

cT cLS - V. 
LS 

rLS ., ,,! 

or 

a + A) (-A)  = v: LS cT wT cLS 

f 
17 
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where; 

A    = 

0 6n     -6f 

■on       0 0 

6c       0 0 

(2-17) 

iN'e^lectinp, second order quantities  j.ivos: 

-A    =    W 
LS CTS  %  CLS (2-18) 

The  above  equation  can be written out as; 

0       -5n        ct 

5n       0 0 

•H       0 ü 

"is- 

LS-/ LSy 

'"LS, 

-0), c U)T r, 0 

1 6n      -6c 

-6n        1 0 

6c 0 1 

Tz      V 

(-(JJT u)_ 0 
L   Ty Ty 

-6n        6e 

6n 

-6E 0 1 

V;L3    - 

(wT    -r 5e CD™ ) 

(-ur    -  6E  iü-rx) (toy    — 6n wj ) 
Y A 

0 ("^xr  "   ^n   ^Ty  +  ^c   ux   ) lX ^Y       -   ^ 

(-U)T    +  or,  u)T  ) (ü'T     +6nü.T     -ötiDr) 1Y iY iy iY Z LX 
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whicli  providtis   thn   two  required   stntc  equations   for  5c   and   rSn   ns: 

OH       =       U)TC —   Um -       6 r    ü"p lz 

6c ^LS, (.T 
Y 

+    Sn ah 

In order to detcrirdne t!ie tiir.c evolution of the line of sight 

angular velocity vector w. <,, consider the position vector of the target 

relative to the aircraft which vas defined as P^ (note that the nagnitude 

of R is the scalar range variable R a.so previously defined). 

Differentiating j* twice with respect to inertial space and applying 

the theorem of Coriolis each tiir.e gives the equation: 

.4^ 
dtr 

d2R 

dt' 
LS 

2uT c  X dR + du)       i 
—LtO -LS 

dt 
LS dt 

X R 

LS 

+ i£LS X  (^s X R) (2-20) 

c 

where the vertical line denotes the frame relative to which the deriva- 

tives are taken, so that the left hand side of equation (2^) i.e. 

dR d2R 

dt' 
represents the total rat?; of change of 

dt 
which is also 

the total rate of change of the relative position vector R. 

Equation (2-20) is entirely general and not referenced to any 

particular coordinate system.  Choosing the line of sight coordinate 

I2T 
system and expression u_Jl 

dt2 
in the line of sight system as rA Tel, 

rel„ 

L Arel. 
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then: 

ArelY 

'reU 

vrel Z J 

Vr 

+ 2 

-R 

^S. 

LSV J 

R ULS. 

-R u; LS Y. 

'v 

-RKS„2  +  ^ISy2)' 

R hi (2-21) 

R^sx^z . 

and the above vector state equation yields the following four scalar 

state equations: 

R = Vr 

Vr = Arelx 
+ R^LSY

2 + ^LS/) 

"LS, 

ULS, 

1   A 2 V-r   , - Arelz   ,:_r + ULSX ^LS^ R R 

2 V, 
R  rel. ÜLSZ ' WLSX "LSY 

(2-22) 

(2-23) 

(2-24) 

(2-25) 

where: 

(. 

rel. 

R = Range 

/r = Range rate 

= Acceleration of target relative to tracker measured 

along the line of sight X - axis 
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^rel  = Relative acceleration measured along line of 

sight Y - axis 

\    ,  = Relative acceleration measured along line of 

sight Z - axis 

thus, if A-^  = target acceleration along line of sight 
X 

X - axis 

A 
and A„n   =  tracl:er acceleration along line of sight X - axis TRX 

then: A^^ = A^^ - ^ etc. 

Equations (2-22) to (2-25) thus represent the exact relationships 

for the aircraft/satellite tracking problem.  It should be noted that 

there is no state equation relating the motion of the tracker about 

the X - axis in the line of sight coordinate system, i.e. w  .  The 

reason is simple, for the purposes of tracking, angular velocity about 

the line of sight has nr significance.  This does not however preclude 

the requirement to mes.ura tire tracker angular velocity in that direction 

but since there is no state equation for a   , it must be eliminatpd 
X 

from equations (2-24) and (2-25). 

In practice, angular velocities will be measured in the tracking 

coordinate frame since there is no physical way in which they could 

be measured in the line of sight frame.  The substitution from equation 

(2-18) is made, i.e. 

LS 
X 

iX. ■LY 
(2-26) 

c 
21 
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and equations (2-24) and (2-25) now become: 

LSy Vclv R LSY 
+  "LSz (L

'TX 
+ ^ WTY - 

6c ^T,) (2-27) 

^S- R A rely 
2 Vr 

^LSy (W
TX 

+ 6r1 WTY " 
£c ^T7)   (2-28) 

The definitions for Are^ , A  , , and A -^ again are made in the 

line of sight coordinate system.  Acceleration incasureir.ents for the 

tracker are only available in the tracker coordinate s-sten in which 

the tracker acceleration vector is defined as: 

V 

"T. 

-v 
and accelerations of the target (satellite) are only available in the 

inertial coordinate system as: 

X 

L x J 
6 

(. 

A- can be transformed from the inertial coordinate frame into the tracker 

coordinate frame by the transformation 

AsT = ciT V 

22 
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Thus, the vector of relative accelerations in the tracker coordinate 

frame defined as: 

'R = 

A, 

L A.. J 

=  AST - ATT (2-30) 

must be used to obtain the vector A^ei, i.e. 

Arel = CT  ^ (2-31) 

f 
v 

where ,LS 
1    6n -6e 

-6n   1   0 

6e   0   1 

or r A relx 

rel. 

vrel7 -, 

1   ön -6c 

•<5n  i  o 

ÖE   o   1 

rY 
(2-32) 

C 

Substitution from equations (2-31) and 2-32) into (2-27) and (2-28) 

gives the final form of the two line of sight angular velocity equations 

as: 
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■2 VT 
U
LSN KArz + ^^Tx 

+ 
-6c 

A   + 
rX H b ~        6 C L 

TZ 
(2-33) 

-2 V, 
LS- JLS, + 4A R ry -LSY ^ 

(. 

•fr-^A, 
R  I 

-  w LS^ ön w^  - 6 c Wr, (2-34) 

Note thc'^1" in equations (2-33) and (2-3A) , the two bracl;2ted terms 

represent modifications to the state eouations for perfect tracking. 

These modifications account for the small angular deviations 6c and on 

from the perfect tracking situation. 

Finally, equation (2-3 2) is substituted into equation (2-23) to give: 

A-  + R(w 
LSy 

+ to. _  ) +  6n A,.  - 6c A,.   (2-35) 
LSZ rZ 

( 

which is the final state equation for Vr. 

Measurement Equations  (Ref, 2, 3, and 5) 

Measurements to the tracking system as already stated will consist 

of inertial angular velocity of the tracker measured in the tracker 

coordinate frame by three rate gyros, measurements of tracker inertial 

acceleration again in the tracker coordinate frame, measurements of range 

and range rate and measurements of the two small angular deviations 6e 

and ön.  None of the measurements arc asso^.ed perfect.  Now the system 

propagates the true line of sight argular velocities "LSy and w-^g . 

whereas measurements are available only of the tracker angular velocities 
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I 

or , u-T' , wT .  Measurements of UJT thus constitute true mensureinonts 
"■A  Ay  lZ i)( 

of parameter Wn, while measurements of wr and w^ are interpreted 

as pseudo-measurements of u^    and w^g  respectively.  If the tracking 

is good, these measurements approach trne measurements.  Measurements 

of angular velocities in the line of sight system would be most 

iesireable but in a practical s'-otem such measurements would not be 

available.  It should also be noted that the tracker accelerations are 

not states of the system.  Thus ncasurements of tracker accelerations 

are measurements of system parameters. 

Measurement of Tracker Anpu1ar_Velocities 

These are provided by three rate ^yros mounted approximately In the 

tracking coordinate frame.  The approximation arises because in practice, 

the gyros will always be slightly misaligned from the true frame align- 

ment.  To simplify the discussion, only the measurement of w-p will be 

described.  Measurements of the other two anpular velocity components 

are modeled identically in form.  The measurement of angular velocity 

in the TL,  direction is thus modeled as: 

üx,  -    uirp      + Bgsfv u„  + E  Bgmv  A.,  + C„ 
^X     ^       X  TX  i = i    i  i     gX 

AC graa tÜrr. + v. (2-36) 
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The terras in equation (2-36) are as follows; 

Uft ^    « measured angular velocity along X-j- - axis (see Fig. 2) 

a,„  = true angular velocity along x^ axis 

Bgsf^- = constant (bias) gyro scale factor 

Bgmx = coefficients (along X, Y, and Z direction? of tracker 

coordinate frame) of the g - sensitive mass unbalance 

to which tn_ gyro is subject 

A^^ = Accelerations (ATY, AT , AT ) of the tracker origin 
■AY/, Y' lZ 

cgy = 8yro drift term along the XT axis. 

.iCgraa = the error angle transformation resulting from the 

misalignments of the three gyros 

ACgraa   A 

0      Bgma12   
B8maj3 

Bgraa2i 

. Btnna 31 Lgma 
32 

Bgma 23 

0 

Note that for the purposes of this study, the terms in the above 

matrix are considered constant and result from the small angle approx- 

imation. 

V is an additive white noise used to compensate for any unraodeled 

effects such as aniso-elastic drift. 

The above terms can be modeled stochastically as follows: The gyro 

drift term C„ can be modeled as a first order exponentially time co- 

related random variable.  Drift is not a white random noise process 
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but does show a degree of correlation in time.  Laboratory data indi- 

cates that the exponential model adequately describes this correlation. 

The state equation for C„ will thu5 be: 

^X -ßn C    +  V2 ßl* 04 Ul* (2-37) 

where  if   T^  represents  tlie systen correlation time. 

5       ^    i- 

a^  is  the rms value of the process, and U4 is a unity variance white 

driving noise.  Fig. 5 below shows the equivalent linear system: 

U4 — V2ß4 ^  1 

-  ß, 

-B"~ 9. 

c. Fig. 5 Linear System Representation for C 
8X 
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U, in Fig, 5 is c ■.•'nlte driving noise of variance q =  1. 

The autocorrelation function for C  is given by: 

CRx
(t)  CgX

(t +  T) 
0,2  e-^M 

Note that by appropriate choice of initial condition for C„ , an 
gx 

initial knov/n bias in drift can be accounted for. 

The remaining coefficients represent unknowns in tho system.  One 

fact is certain however; none of these coefficients will vary with time. 

For example, the gyro misalignment coefficients have values which des- 

cribe how the gyros are displaced during assembly from their true 

orientations.  While these displacements may not be known, it is certain 

that in the time scale of a typical satellite pass, they will not change. 

The model chosen to represent the coefficients therefore will have the 

general form: 

X ■= 0 

This is a linear equation and the covariance equation which corre- 

sponingly describes the way in which the covariance of a coefficient 

will change in time is given by the general form: 

( 

P = F P + P FT   (where FT denotes the trans- 
pose of F, and F is the 
system matrix) 

Thus, P = 0, 

and this implies that the variance of a coefficient likewise will not 

change with time.  Choice of initial conditions on X and P completely 

describe a coefficient.  The initial condition on X represents the mean 

value of the coefficient and the initial condition on P represents the 
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variance of the distribution of X about its mean. Often, hovever, the 

only information available about the coefficient will be the variance, 

in which case, the most reasonable choice i.or an initial condiUi 

X is zero. 

ion on 

Measurements of_Tracker Accelerations 

The tracker accelerations are parameters of the systi;m rather than 

states.  The measurenents are modeled as follows.  I.'ote that onlv the 

measurement equation for the acceleration in the XT direction is given. 

The remaining equations are identical in form. 

Aj. 
% = ^X + ^X ATX + Cax 

+ 3n°nXi ATx
2 + Bnonx ^ 3 

2   X 

+ ACma AT 

The terms in equation (2-33) are defined as foil ows; 

(2-38) 

Aj   = measured acceleration along XT direction in tracker 

coordinate frame 

Anp   = true acceleration 

Sas X accelerometer scale factor 

(. 

Za       = accelerometer drift and bias aX 

Bnon^ « accelerometer (g2) non-linear coefficient 

Bnon 
X2 =■ accelerometer (g3) non-linear coefficient 
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ACraa 

Bama 21 

Dama 

Bamaj2   Bama 

31   Bama32 

13 

Bama 23 

0 Is the error angle 

transformation matrix which supplies the acceleroraeter misalignment 

coefficients. 

Note that the small angle approximation has been made in using 

this matrix. 

V4 = white noise to account for unmodeled effeo.".-. 

Once again, as in the case of the rate gyros, the coefficients in 

the measurement equations are modeled as states of the system.  The 

accelerometer drift and bias is modeled as a first order exponentially- 

correlated random variable.  This choice of model is justified since 

the magnitude of the drift will in fact vary with time. The degree of 

correlation in time is expressed by the constant ß. used in the state 

equation.  Note that equation (2-37) describing the gyro drift shows 

the form of these equations.  In addition, the remaining coefficients 

are once again modeled as random biases. 

c 

Measurement of Angular Misalignments 6e and 6n 

The tracking device will be capable of providing measurements in the 

tracking coordinate frame of the two angular misalignment angles 6e and 

6n.  See Fig. 4 for a description of the geometry,  on is measured about 

the Z™ - axis and öe is measured about the yyc - axis.  In practice, 

the LS - coordinate frame and the T - coordinate frame will be closely 
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aligned and öc will in face be assumed to be measured about the yT - 

axis. 

Now there are clearly many different measuring devices.  If a 

radar scanner were used, the measurement device might be different to 

that used with a laser tracker.  However, a somewhat representative 

model is chosen which could easily be adjusted to suit the particular 

device.  The measurement model for the two error angles has the following 

form: 

6cM = K (6c + Se) + Cc -M    'V-  ■ -'  ■  .SFE • 6e + BAT^ + V7 

6nM = K2(6n + Sn) + CSF • 6n + BAT  + v8 

where the various coefficient are as follows: 

Kj, K2 - deterministic scale factors 

Se, r  -  angle track scintillation noises 

Cgp , Cgp  - scale factor errors 

(2-39) 

BATe' 
BATn 

angle track biases 

V7, VQ - white gaussian additive noises to account for 

unmodeled effects 

Kj and K2 are assumed to be known.  S£ and S^  are modeled as first order 

exponentially time correlated random variables. This model is used 

since the scintillation noise Is dependent on various factors such as 

atmospheric propagation, amplifier characteristics, etc.  This type of 
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factor does not change instantaneously with time hut fluctuates.  Again 

the state equation used will have the form: 

;
E " "ßl Se + / 2 Bl  ül Ul (2-40) 

where ß^ ■ ~ , and Tj is the correlation tine of the process,  aj" is 

the steady state covariance of the noise and Ui is a white driving 

noise with unity covariance. 

The scale factor errors C:   and CCr. are modeled also as first 
SF
e     

SF' n 

order exponentially correlated random variables with state equations of 

the form shown in (2-A0) above.  This is another way of statins; that 

the constants Kj and K2 are not really constants but random variables 

which are expcnentially time correlated and have a non-zero mean. 

Again, the justification for using this model is that the scale factors 

are really determined within some type of electronic equipment which 

exhibits time correlated behaviour. 

The remaining coefficients BAT and B^  can be adequately modeled JAT. AT. 
E     —n 

as random biases,  i.e.  The actual values are unknown, the covariance 

is known and the variable has 100% time correlation. 

Measurement of Range 

The measurement of range is very similar to those of the angular 

misalignment angles except that the scale factor error is omitted. 

The measurement equation is thus: 

*>! = V* + V + B
R 

+ v< (2-41) 

(, 
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whers: 

R  - measured range 

R  -  true range 

S  -  ran^e scintillation noise 
R 

5R - range bias 

V  - white gaussian additive noise to account for unmodeled 

effects 

4 

The actual electronic methods by which range is measured vary from 

those by which the angular misalignments are measured.  In general, the 

latter depend to some extent on analog equipment (linear amplifiers, 

etc.) while the range measurement can usually be accomplished digitally 

with very little analog equipment.  The digital equipment can usually 

be accurately calibrated so that only the scintillation noise and bias 

need bo stochastically estimated.  The bias will be small in magnitude 

compared to the scintillation noise and will result from the equipment. 

The scintillation noise will however be the additive effect of the 

digitization of the range and the atmospheric fluctuations. These can 

be combined and modeled as the familiar first order exponentially time 

correlated random variable.  The bias is considered to be fixed but 

unknown and can therefore be modeled as a random bias. 

Measurement of Range Rate 

The experiments performed with this model have shown that the 

measurement of range rate is usually redundant since range measurements 

made at a high frequency will yield the same information. The possibility 
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of a range rate mGasurement is therefore not Investigated. 

Sunmary of Systcm  Truth 'lodcl State and Measurencnt Equations 

The above state and measurement equations for the system truth model 

are summarized ai' follows: 

State Equations 

(1) Xi     =    X.» 

(2) X2    »    X5 Satellite  Inertlal Position 

(3) X3    =    X6 

Agi  + Adi + Asi + Ami + Api + Wi (4) Xu 

(5) X5 

(6) X6 = Ags + Ada + Ass + Ams + Apa + W3 

(7) X7 = 0        Satellite Ballistic Coefficient 

Satellite 
Agj + Ad2 + As2 + /m2 + Ap2 + W2   Inertlal 

Velocity 

(8)     X8    =    0 Satellite Sol   r Pressure Coefficient 

(9)  a) 
LS, 

1 A 
2 Vr tu + 10         0) 

R rz R LSY LSZ     T; 

-St  A ty  +  w 
LS, 

6n a. -  6c » 
Tz 

Tracker 
Angular 
Velocity 
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f 

( 

(10)     u. 
LSr R    ArY 

'-on Ar 
-       0) 

LS, 

2 Vr 

R ^SZ 

|    6n Wj 

^LSY  % 

6E   w,r 

Tracicer 
Angular 
Velocity 

(11) 6n 

(12) 6e 

LS; 

LSv 

^T  - 6€  ^ 

(JO + on 
^X 

(13)  R = V, 

Tracker Misalignments 

Range 

(14) V, 

(15) Sc 

Arx 
+ R ^LSy2 + ^LSz2)  + 6nAr  - SzA^.        Range Rate 

~ßlsE + V2 01 al "I 

Angle Track  Scintillations 
(16)    S      -    -ß2Sn    +    V2  Bo a2 U 2   u2   u2 

(17)     S 
R -ß3SR    +    V2   ^3  03 U3 Range Scintillation 

(18)    C 
8X 54Cgx    +    V 2   64     04     U4 

(19)    C 
8Y 

(20)     C gz 

(2i)   cav 

•ß5CgY    +    V 2   ß5     05     U5 

■ß6Cgz    +    V2   ^6     ^6     U6> 

■e7Cax    +     V2   67     07     lM 

►Gyro Drift 

(22)     C aY ■ß8Cav    +    VT 68    o8    U8 

(23)     C, ■h%   +   VTT7   o9   ü9> 

Accelerometer Drift 

(24) ^    »    -6ioCSFe    +   V2ßl0Ol0U10    j 

,  j     Angle Measurement 
(25) CSF      o    -6llCSF      +    V2  ßll  0ll ull    )     Scale Factors 
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(26)  B^^  .  0 

(34)  B^^ =• 0 

I Coefficients of Gyro Mass Unbalance 
(nine equations) 

(35)  BAS„ = 0 

(36)  BAS  = 0 

(37)  B AS. 

>       Accelerometer Scale Factors 

(38)  B„ma   = 0 gma! 2 

(39)  Egmai3 " 0 

(40)  B„m=   = 0 
gma2i 

(41)  B      = 0 
gma2 3 

(42) EJm;j   - 0 gma31 

(43)  Bem3   = 0 
8ina32 

) 

Gyro Misalignment Coefficients 

i 

W    Baina12 = 0 

^5) ßama^ = 0 

(46)  B ama 21 
= 0 

(47) BAni_   = 0 

(48)  B
ama     =  0 
ama 31 

(49) B     = 0 
ama32 

Accelerometer Misalignment Coefficients 
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(50>  BnonXl " 0 

(51)  B,,^,,   «  0 

(52)  BnonYi  = 0 

(53)  B non 
Y2 

0 ) 

£1 

(55)  B^^   = 0 nor.7 

(56)  ßR = 0 

Accelerometer (g2 and R3) non-linear 
coefficients 

Range Blas 

(57)  B AT- 

(58)  B AT. 
Angle Track Blas 

(59)  B 
gsf^ 

(60)  B 
gsfy Gyro Scale Factors 

(61)  B 
gsfz 

= 0 
:: ? 

C 

The truth model therefore has a total of 61 state equations.  Of 

these, the first 14 represent the true system dynamics while  the 

remaining 47 equations are introduced to model the measurements to the 

System. 
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Heasuremcrit  Equations 

(1)     ^ LTX    '     ^^X WTx    +    i f  1  
3KmXi  Ai    •-    Cgx 

ACgn!a ^T +    V, measurement  of w-p 

- X 

(2)     ^    =    WTY    +    BgsfY WTY    +    ^ Z  ^ Bgmyi Ai    +    C^ 

^'-'gina ^T + V2      measurement of a)-, 

C) ^Iz = .Tz + Bgsfz UTz +  r  B   A, + c 
1 = 1    1        ^ 

AC gma UT +  V: measurement of u^ 

where 

AC gma 

gma]7  gma 

B. 
gma21 

0    B 

13 

gma 
23 

"  gnia31  gma32 

and 
A1 = Aj. 

V acceleration of tracker origin 
in tracker coordinates 

AT, 
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(A)     ^ 
XM 

TX afaX   ^X aX nonx    ^x 
+     B O 

n0nXo    \ 

] AC  n    Al +    V 1113       T  L t, Measurement of AT, 

(5)     A T 
% 

Ar+B^A^+Co+B A2    +    R i3 

^Y aSY    TY 
uaY 

nnonYl   
ATY      +    "nony *TV Yi  ^Y 

ACma Ar +    ^Cma Ar Measurement of Am 

(6) AT,   = A,,,  + B   AT  + CL  + B     A^ 2 4. «     A 3 rZM     Tz     asz  iZ     az     nonz :i  V    +    Bnon.    Ar: Z "--Ai       -Z "■"■'72      ^Z 

r 
+ [ACma    ^T] +    \ Measurement  of 

\ 

where AC. ma ama j 2 a™313 

ama21 
0 Bama2 3 

LB B 0 
ama31 0111332 

(7) &zn    o K (6e + S ) + C    6e + BAT  + V 
SFr AT 

c 

Measurement of 6E 

(8)  6r^ = K (6n + S ) + CSF  6n + BAT  + V8 

Measurement  of  6n 
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(9) R M KR(R -t  Sp)  + BB + V R Measurement of R 

Appendix D lists a typical data set for use with the above measure- 

ment equations. 

( 

Use of Measurements 

The above measurenent equations are the total measurements available 

to the system.  However, only equations (2), (3), (7), (8), and (9) 

correspond to measurements of the states of the system.  The remaining 

equations are measurements of system parameters.  Thus the true system 

measurement vector has only the above 5 elements.  There are two ways 

in which the other measurements can be incorporated into the svptem. 

One method would be to consider the true system measurement vector to 

contain all 9 elements and the other method would be to rewrite the 

state equations and substitute the measured value of a parameter for 

the true value.  The latter method limits the number of measurement 

equations to 5 which is desireable.  In addition, since the true oara- 

meter values will not be known and the best infomntion about these 

parameters is contained in the measurements, the latter method would bo 

implemented in practice.  For this problem therefore, the measured nara- 

meter values replace the true values in the state equations and C'^c 

number of mcnsuror.ont equations will actuallv be 5. 

Lincarization_ of SLate and Mear.urcmcnt Equations 

Appendix B shows how the state and measurement equations for the 

truth model are linearized for application to a covariance analvsis 

of an Extended Kaiman Filter. 

AO 
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< 

III.  EXTE:n)ED F.M.MAN FILTER 

Basic Kaiman Filter  (Ref. 12) 

To understand the Extended Kaiman Filter formulation used in the 

study, it is first necessary to examine the equations for the "asic 

Kaiman Filter.  For this study, the state, equations of motion are 

continuous in time.  Computationally, the equations are discretized but 

choice of an integration interval short conpared to the system time 

behaviour ensures that the system is effectively continuous.  Measure- 

ments are incorporated at discrete points in time.  Thus the continuous 

form of the Kaiman Filter with discrete measurement updates is appropriate, 

The following definitions will be required: 

t 

x(t.) - system state at time t - (n vector) 

x(t)  = filter estimate of the system state at time 

t - (n vector) 

x(tj-) = filter estir.ate of the system state at time t^ 

before a measurenent is incorporated - (n vector) 

x(tj+) = filter estimate of system state at time t^ after 

a measuren.cnt is incorporated - (n vector) 

"Ktj.t.   -i)  =  svstem state transition matrix from time t. i • i - 1      - i - .^ 

to time t^ - (n x n matrix) 

( 

'-' and '+' convention is 

P(t.)  -  covariancG matrix of the filter state estimate 

x^t^) - note that the 

used here also - (n x n ratrix) 

Al 
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v.. ■ 

KCt^^)    =    Kaiman gain matrix  at   time  ^ -   (n matrix) 

F(t)     «    systems  dynamics matrix  defined  at  all   t  - 

(n x n matrix) 

G(t)     =    system noise  input matrix defined  at  all   time   t 

(n x s matrix) 

Ht±) measurement matrix defined onlv at time tj 

(m x n matrix) 

w(t)  == G^ussian white noise vector with statistics 

c 

E j w(t)|    = 0 

E j w(t) wT(s)(  = Q(t) 6(t - s) 

(s vector; 

Q(t) = positive semi-definite symmetric noise covariance 

matrix - (s x s matrix) 

_v(ti)  = Gaussian vhitc noise vector sequence with statistics 
(tn - vector) 

E  j v(t.) }  •=  0 

E     | vCtp   vJCtj) )       =     ( RCti) 

I 0 
4  =  ^ 
ti/  t i 

RCtp positive  definite   symmetric noise   covariance matrix 

(m x m matrix) 

zitj)     =    measurement  vector  at   time  tj   -   (m vector) 

System Dcscription 

The  system  is  descrihed  hy  the  followin,", state  equation; 

A2 

m il^JtJniaiMtoUl 
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c 
x(t)     =    F(t)x(t)     +    C(t)  w(t) 

and measurement  equation: 

z(ti)     =    HCtiMti)    +    vCt^ 

(3-1) 

(3-2) 

Filter  Equations 

The  filter  state  estimate _x(t)   is  propagated  from tine   t^   _  ^ 

time   tj[_  by   the equation: 

to 

ktf)     =    ^(ti,   t.   _  {)  Ut± „ !+) (3-3) 

and  the  covarlance propagation  is  p,iven by; 

'(tf)     =     ^ti,   ti _  i)   P(ti _  !+)   ^(ti.   ti _  i)     + 

(3-4) 

[      Kti T.^   AT, .,   T)   G(T)   0(T)   G
T
(T)  «Mt^   T)     dt 

■i -  1 

The Kaiman gain matrix at time t. is given by: 

Ut±)     = P(ti-) IlT(ti)   li(ti)P(ti-)U
T(ti) + R(ti) | 1 (3-5) 

and at time t., the state estimate is updated by the equation: 

xCt^)  = xU-)  + K(ti)   ^(ti)  - "(ti) iitf) (3-6) 

where C (t4) is thr vector of measured values vhlc!1 z(t.) assumes at 
l^i 

time ti.  The covariance matrix is updated at time ti bv the equation; 

P(ti+) = P(tr) - ^(t^ iKti) P(ti-) 

A3 

(3-7) 
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Equations (3-3) and (3-4) are thus the propagation equations for 

the state estimate and covariance respectively and equations (3-6) and 

(3-7) are the update equations for state estimate and covariance res- 

pectively.  Initial conditions for the propagation are: 

^o> E i x(t0) 

P(t0)  = E  [x(t0)  - £(t0)] [x(t0)  -£(t0)]
T  (3-8) 

Extended Kaiman Filter Fornulation  (Ref. 13) 

The Extended Kaiman Filter is one method of propagating the 'ootinal' 

estimate of the state of a non linear system.  In the above linear form- 

ulation , the filter estimate was indeed optimal since the equations of 

motion and measurement equations were totally linear and the basic Kaiman 

Filter provides the optimal or best possible estimate for a linear system 

driven by white Gaussian noise.  The Extended 'Kaiman Filter uses a first 

order linearization process and hence, the estimate will only be optimal 

providing deviations from a nominal trajectory remain arbitrarily snail. 

Consider the non-linear state and measurement equations: 

x(t)  = f [ü(t), tl  + G(t) w (t) 

(3-9) 

:nu- where once again, w(t) and v(t.) are as described for the linear forr 

lation with noise covariance matrices 0(t) and RU^) respectively, but 

in this case, the system dynamics is non-linear and expressed hv the 

non linear function f (, , ) and the measurement is a non linear function 

of the state x(t) and described by the non linear function h_( , ).  Note 

however that the driving noise w(t) is still additive in a linear fashion 

^ft^WiiWn.,^^^ I^^^,^:^mfmf].li "'—■ ^""BftmarfiiuttftliMaBteMj 
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respect to the state x^ and which is evaluated along the nominal reference 

trajectory, i.e. 

^     9 iL^t). tj [ t; 2no] 
3 x 

(3-15) 

x(t) - Xn^) 

Equation (3-14) represents the first order approximation to equation 

(3-13) and propagates from the initial condition j5x(t0) which is modeled 

as a Gaussian random variable with mean (x0 - 'X-nQ)  and covariance P0. 

The notation Ft; xno  implies that F is <-. function of time and that 

F is evaluated along the nominal trajectory, which is a function of Xno* 

Similarly, the measurement equation can be approximated to first 

order by the equation 

where; 

H 

6z.(ti) 

t±;  Xntti) 

H j^ti; XnUp fixUi) + ^(ti) (3-16) 

9 h [xUi), tij 

3 x 

and the notation H I t^, 2Sn(ti) 

x(ti) "    Xntti)   (3-17) 

iä used to imply that H is a function 

of the sequence of times t^ and is evaluated along the sequence x^Ct.). 

Equations (3-14) and (3-16) thus represent the linearized varia- 

tional equations for the system and therefore the theory of linear fil- 

tering could be applied.  In fact if the variations ^x(t) and 2£(t-i^ 

remain sufficiently small, v.'hich in turn implies that the true and nominal 

state trajectories deviate by 'sufficiently' small quantities, then the 

results of the application of linear filtering theory should be optimal.  The 

word 'sufficient' is of course relative and even small deviations could re- 

sult in large magnitude errors. 

The object of the Extended Kaiman Filter is to obtain the state 
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( 

through the matrix G(t) and the measurement noise is also additive. 

The Extended Kaiman Filter formulation assumes that the noises are 

white, Gaussian and additive in the same way as the basic Kaiman Filter, 

although the system dynamics and measurements may be non linear. 

Assume some nominal reference trajectory is available, denoted 

as Xn(t), which is propagated from the initial condition xn(t0)  = Xno 

by the equation: 

^n(t)  = l[>(t), t] (3-10) 

and assume also that associated with this nominal reference trajectorv 

is the sequence of nominal measurements: 

yti)  - H^n^' 'i] (3-11) 

and consider the perturbation of the state from the assumed nominal 

reference trajectory such that: 

öx(t) &    x(t)  - xn(t) (3-12) 

The error is a stochastic process which satisfies the stochastic 

differential equation: 

6x(t)  = 1 [x(t), tl  - l[x (O, t]  + G(t) w(t)      (3-13) 

The first order approximation to this equation usually referred to as 

the variational equation is: 

where  F 

6x(t)     =    F [t;  xno J   Mt)     +    G(t)  w(t) (3-14) 

I t'  .1:110       is  c^e rrial:ri-x 0t partial derivatives of _f (   ,   )  with 
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estimate ^(ti ) an(i then relinearize about this estimate.  Thus as soon 

as a new state estimate is made, a better reference trajectory is in- 

corporated into the system.  In this manner, the assumption that the 

deviations from the reference are small remains valid providing the 

time between estimates is kept small.  Now, if the system is relinearlzed 

after x^i ) is obtained, then the error state _5x(t^ ) will be zero. 

Recalling equation (3-3), rewritten here in terms of the error state: 

+ 
öx^i + ! )  = 4.(4 + !» 4; x^i ))   Mti ) (3-18) 

A      1 

where the notation is meant to convey that $ is a function of x^i ) in 

addition to ^ + 3^ and t^  It is apparent that if ^(t-^ ) is zero, then 

jSx^t^ +^ ) will also be zero since equation (3-18) is linear.  In fact, 

using the notation ^(t/t^) to indicate that the estimate of j5x at tine 

t >_ t^ is based only on measurements through time t^, then jSJc(t/t^) will 

remain zero throughout the interval  t^, C^ 4 ]l . 

Now, considering the measurement update for the linearized system 

at the next measurement sample time. 

ii^i + i+)   =  ii^i + 1") + K(ti + 1)    i^(ti + 1) - H(ti + 1) i2i(,:i + O 

K(ti + i) ^(ti + x) 

-  KCti + !)   dti + !) -■ b  x^i + 1/4)' H + 1    l3^1^) 

where K(t^ + 3) is computed using matrices evaluated along the most re- 

cent nominal trajectory x(t/ti).  So far, the state deviation has been 

estimated between measurement instants as zero and at the measurement 

update point as given by equation (3-19).  The full state estimate 

A7 
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x(t/t,) between measurement instants t. and t-i + i must therefore 

be given by the solution to the equation: 

xCt/ti) - f [xCt/ti), t ] (3-20) 

Since the deviation is zero throughout this interval. At the 

measurement, update time t^ + j , the state is given by: 

x(ti + 1+) = xCti + i/ti) + SxUi + i+) 

(3-21) 

(ti + l) x(ti + i/H) + K(ti + i)  £' 

which is the state estimate update equation for the Extended Kaiman 

Filter. 

Summary of P-opagation and Update Enuations 

The equations for the Extended Kaiman Filter are summarized as 

follows: 

Propaga tion:  The state estimate and covariance are propagated as: 

i + 1 
£(4 + f) = ict^) +    r        iLict/ti), tj dt 

or equivalcntly by integrating:       iL^^i^  = X I ^-^^i^ ' tJ fr 

t^ to t^ , i using the initial condition; JiCtj'/t^)  = ^(t^) 

'(ti + f) = Ht, +  !. ti; i(ti
+)) P(ti

+) ^(ti + i. 4; iCt^)) 

-i + l 

f      'Hti + ^'Mt^))  r,(0 n(T) GT(T) *T(ti+1» T; x(ti
+))ciT 
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<~- which is equivalent to integrating 

PCt/ti)  = F [t; iCt^)] ?it/t±)     +    PCt/ti) FT [t; ^(t^) ] 

+ G(t) n(t) GT(t) 

fron time t  to ti + 1 usin!? t^6 initial condition: 

PCti/ti)   =   PCt^) 

Measurement  L'ndate 

The  state estimate  and covariance  are  updated as  follows.   Define: 

KCt-,  x(,ti _  1
+))    o 

PCt^)  iPit^,  xCti _  !+))    I iKti;   xCti _  !+))   PCtj")  F.TCti;  xC^ _  1+)) 

xCt^)     =    xCti")     +    KCti;  xCti _  !+))   [iCti)     -•    MxCtp,   t^J 

PCti4")    =    PCti")    -   KCti; ^(ti _ i+))    HUi; iCt. _ !+)) rCtj) 

Comparison x^ith Basic _Kn_I_r.an Fil_ter 

The above equations arc essentially sinilar to equations (3-3) , 

(3-M, nnd (3-6), (3-7) for the basic Kaiman Filter.  However, the 

gain matrix K for the basic Kalran Filter can be preconputed since it 

does not depend on the current filter estimate at any time.  This is 

not the case for the Fxtcnded Kaiman Filter in which the matrices F, 

{ h (and J) are functions of the current filter estimate and consequently 

A9 

 — -    ■ '   ■ ■-- - ■ ■   •   ''-■■■ ■        ■     ■     •'■ ■      - '  ■ '  •■■■--       . v;  ■■    ■     ■ ■■  ■   ..:-..-     ■-.    ..   .,.- ■   ..;■;.. ;,- :. ., '. --..,-■■;■ ;.,,.  ' !.    ■■ .■     . ■  C   : 



"? '•^1''f*zrfM i itfrntAft-u, uwjf t*; WTT «"fr 

GA/EE/74-3 

^ K is a function of that estimate also.  Similarly, the transition 

matrix  varies as a function of x. and thus P is a function of the 

estimate x_ during propagation.  This therefore is one major difference 

between the basic and Extended Kaiman Filter formulations.  The equations 

for the propagation and update of the covariance matrix P are coupled 

to the state estimate x. 

Application to Tracking Problem 

The purpose of this study is to examine the performance of a re- 

duced order filter model of the system.  This involves carrying out a 

covariance analysis which, will be described in the next section.  The 

covariance as a function of time will describe the filter and truth 

model performance and there will not be any requirement to propagate 

the actual filter estimate _x.  However, the matrices F and H which 

result from linearization of a non linear functions f( , ) and h( , ) 

respectively must be linearized about sore non-linear reference trajec- 

tory.  For this reason, the non-linear state equations of motion are in 

fact propagated.  Thus, the true filter would use the matrix Ft; .x^i - 1 ) 

to propagate from t. _ -, to t. where x^t^ _ ]+) is the initial condition for 

the trajectory segment, up to measurement time t^, along which F is eva- 

luated.  Similarly, the matrix H [t^; x/t^ _ 5+)  would be used for the 

true filter to update the P matrix at tine t^.  For this analysis hov.-ever, 

the matrices F ft; x (t^ _ 1) J anci H  t^; xn(ti)  are used.  The reason 

for this is Chat x_(t) is not available in the covariance analysis, and 

to obtain x(t) with one run would not suffice.  In fact, Monte Carlo 

techniques would be rcuired to find the PMS performance of the filter 

/ if x^(t) were used.  In this case, the benefit of doin" the covariance 

analysis would be lost. 
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Thus, evaluation of matrices F and H using ^(t) rather than 2^(t) 

Is one fundamental limitation to the covariance analysis but necessarily 

this limitation must be accepted and it should be recalled that the 

covariance analysis is the first step towards i full Monte Carlo analysis. 
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IV.     COVARIAxN'CE A-^ALVSIS  OF  SUBOPTIMAL  FILTER DESIGN 

Objective 

Section II developed the true system state and measurement models 

for the aircraft to satellite tracker.  In fact, to use the expression 

'truth model' to describe these equations is incorrect.  There is no 

way of predicting exactly what the precise true system performance will 

be.  However, the equations were developed ta'r inp, into account all 

reasonable system disturbances and thus represent the best approximation 

to the 'truth model'.  The resulting model has 61 states and would there- 

fore be impractical to innlement on board an aircraft where computational 

speed and storage capabilities will be limited.  A search will thu^; be 

conducted to find a reduced order model which will adequately model 

the true system.  This will involve making simplifying assumntiops and 

will result in a sub-optimal design.  The Extended Kaiman Filter design 

will be based on this sub-optimal model and it's performance vjill in 

turn be sub-optimal.  Under these circumstances, a study must be under- 

taken to evaluate tbe suboptimal filter estimation error performance and 

the sensitivity of these errors to incorrect or incomplete dynamic or 

statistical modeling.  This study is commonlv referred to as a sensirivity 

analysis. 

The Eruations for Scnsitlvit-»- Analvsis  (Ref. 2 and 1A) 

The following will devolon the anuntions for the sensltivitv annlvsis 

of the sub-optimal filter design.  In practice, the filter estimates 

resulting from using tlie Kxtended Kaiman Filter with a reduced order 

system model would be used to provide some closed loop control to tVie 

system.  However, in order to sinnlifv the devrlopment, the effect of 

such control inputs will bo Ignored.  Reference 2 shows how the eouations 

52 

 ^^ ■■ ■■■ ■ -' -■- ' 



i#W,M!WI'MW^W»«^^ 

GA/EE/7A-3 

C are extended to include control inputs. 

Truth Model The truth model equations representing the most detailed 

model of the real world were developed in section II and are written 

below using slightly different notation: 

xs(t)  = Fs(t)  Xs^O  + Gs(t) ws(t) (4-1) 

where 

( 

Xg is an n - vector denoting the true state 

Fg is an n, x n, system matrix 

Gg is an n1 x m, gain matrix 

w is an m vector of white Gaussian noise inputs with zero 

IT   1 
wc(t) w (T)  = Qc(t) i5(t ~T) 

Note that equation (4-1) is in fact linear whereas the truth model 

equations are not.  Equation (4-1) could be considered to represent the 

error state system model described by equation (3-14) section III. 

Since this is a linear equation, the Kaiman Filter theory can be applied 

providing that perturbations from an assumed trajectory are small so 

that linear effects dominate. 

Similarly, the sensitivity analysis to be described here assumes 

linear equations and could therefore be applied to the linearized error 

state equations developed in section III within the region of small 

perturbations. 

A set of discrete measurements art available at times t^ and can be 
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v 
described by the equation: 

23(4)  = H^t^ XsCti)  + VgCt^ (A-2) 

which  is  analagous  to  equation(3-16) section   il-,   and 

Zc   is an r - vector of measurements 

Hg   is  an  r x n    measurement matrix 

VQ  is an r - vector of Gaussian vmite noise  inputs with 

zero mean an d variance       E       ^(tj)  y^(t.) =    r.s(ti)    "^  j 

Filter Nodel 

The  filter model  is  defined   to be   the  reduced  order model  to ^nich 

the Extended Kaiman Filter will be  applied.     Again,   this  is  assumed  to 

be  linear  and   thus  the resultant   scsitivity equations will be valid 

only  in  a  region of  small  perturbations   about  the nominal trajectorv. 

xF(t)     =    FF(t)   xF(t)     +    G  (t)  wF(t) (4-3) 

wnere; 

x  is an n - vector denoting the filter state (n  < n ) 
-F       2 2    1 

F-p is an n x n svstci matrix 
t        2    2' 

Gf is an n_ x r  gain matrix 

v;„ is an m, vector o*" white Guassian noise Inputs with zero mean 
—F       ^ 

and covariance:  K | Wp(t) wr'i"(:) nF(t)     £(t  -  ') 

The  filter  mi-nsuremcnt  eruation   is: 

Iv^O   - ;(ti)    Xy^tj)       +       VF       (ti) 
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where 

Zp is an r - vector of cRasurcments 

Hp is an r x n- measurement matrix 

v^ is an r - vector of white Gaussian noise inputs with zero 

mean and covariance  E !vp(t.) Vp^Ct.)j  = ^pCt^)  ^J * 

Applying th • basic Kaiman filter equations to the above filter model, 

the filter estimate between measurements is given bv: 

xF(t)  =  FF(t) xF(t) (4-5) 

with associated covariance matrix satisfying the enuation: 

P (t)  - FF(t) P (t) + PF(t) FF
T(t)  + GF(t) 0F(t) GF

r(t) (4-6) 

Defining t.  and t.+ as before and after a measurement incorporation 

at time t^, then at a measurement update, 2<F(t) and PF(t) are given bv: 

Kj,^)  =  PF(ti") Hp'^ti)   I-.pCt.) FF(t.-) HpCt^  + RpCt.) 

+ 
Xp^i )  =  xptti ) + ^(ti) r^Ui)     -    H (4)    XpCtf) (A-7) (A-: 

pF(ti
+) Ppup .(tj) UpCti) PF(ti-) (A-3) 

where 

Xp(t) denotes the filter estimate of x„ 

( v. 

Pv(t) denotes the covariance matrix associated with XpCt) 
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Note in equation (4-7) the use of the vector of measured values 

CcCtj), since the actual noasurements will in fact be taken from 

the true system.  Now, if the state vectors xy  and Xc; are arranged 

such that: 

T A 
xF = T xs and T = I (n  x n ) 

2    2 

_0((ni - n^ x n2)_ 

(4-9) 

then an error vector e(t) can be defined such that: 

e(t) = xs(t) T xr(t) (4-10) 

Note that there is a loss of gencralitv in this assumntion, the 

filter model states would not in general be selected truth model states. 

Rather, '"he filter states would be linear combinations of the truth model 

states,  however, in practice it is usual that the filter model is in 

fact the truth model with selected states removed.  Tf this is not the 

case, then the T matrix could be defined differently without chap inr; 

the final results. 

The objective of the sensitivity analysis is to examine the pro- 

pagation of the error vector e_(t) with time and the pronap.atlon of the 

covariancc matrix of e(t) defined as: 

P^(t)  = ee c(t) cl(t) 

Now, e_(t) is a vector c-xpresslnp: the er\-or committed t" using the 

particular filler model and ree(t) expresses the covarlance of that 

error, The Kaiman Filter covariancc P- is alno a measure of the error 

A 
in the estimate x,. but ray not neccssarllv reflect true performance of 
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the filter.  The sensitivity analysis therefore is a method of comnaring 

the filter estimate xp(t) with the true system state Xs^' ^Y propa- 

gating ^(t) and Fee(t), and thereby determining the true error obtained 

by using a particular filter formulation.  The evaluation of Pee and 

P,;, is commonly referred to as a Covariance Analysis while the examination 

of e(t) ovor an ensemble of runs is usually called a Monte Carlo analvsls. 

In order to study the behaviour of £(t) , rec(t) , and Pp(t))thc aufnented 

state vector y(t) is formed such that: 

y(t) = e(t) 

x(t) 
(4-11) 

where y(t) is an n + n dimensional vector. 

The differential equation for this augmented state vector is 

therefore: 

y(t) = e(t) 

x(t) 

Fs 2<S + Gs ws  -  T FF XF 

F
F -r 

(4-12) 

where the time subscripts on the right side are dropped for claritv 

Rewriting equation (A-12) gives: 

y(t) 
F,, xn + Gc w S - S -S 

T Fv x  +  F T xF -  Fs T xF 

FF Xp 

(4-13) 

Fs(x< T ^F) + (rS T " T FF) xF + r-s w? 

FFxr 
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F e +  (Fc; T 
s -    s T FF) xF + 65^ 

F -F 

which can now be written In matLix form as: 

y(t) = 

Fs    (Fs T - T FF) 

y(t>  + ws     (A-1A) 

or 

y(t)  =  V y +  G w 

r 

with F and G defined as in equation (A-14) 

Betv een nieasurer.ents, tlie covarinnce of y(t) propagates according 

to the differential equation: 

P  =  FP + PFT +  GOGT 

where Q  =  Qs an^ ^ an^ ^ are defined above, 

and 

P(t)  = 

Pee(t)    P12(t) 

r21(t)  P22(t) 

and P  (t) is enuivalcnt t- the natrix i'r(t) frorr. the ''rJnan Filter 
22 

equations (A-ü) and (4-8). 

At a noasurement undate, xt,. will change accordinr to equation 

(A-7). v.'hilo xr will not ciiaiice since control inputs are noc considered 

i.e. 

^ =   ^s" 

xF
+  =     xF       +    KFUS     -     !!F £,,-) 
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c where   the -   and +  signify before  and  after  incorporation  of  a 

measurorcent  respectively. 

+ - 
5F      =    iF +    KF(I!S xs- -   nF 2F    +   vs) (4-17) 

and  since; 

e+    =     xs+    -     TxF
+ 

=     x -     T [ir"   +   !'F (HS 2S       -    FF ^F       + is)] 

US       -     T i$F       "    T KF nS Z^S       +    T KF Up xF      -    T KF Vg 

r 
=    ^s     ~   T ir")    "   T KF Hs (^s     -   T ky~) 

+    T K F   (HF    -     l!s  T)     xF- "     T KF vc 

=     (I     -     T KF H   ) ^     +    T KF(!!F    -     Hg  T) £F       -    T Kj, 
'    -S 

and fror.i   (A-17) , 

^F      =    2K      +    K
F 

HS i^S KF HF >:F      4-    K-p Vq 

"      ^F 
+ 

Xp      +    1CF i?s ^ KF ns  T xr       +    KF H    T xF' 

Kp H    xr       +    Kp V, 

Kp Hs(xs- T x "")     +     (I     +    I'    Ho   T    -    Kr Hjxr    + Kr v 
-1: T "S p    uF/±, 'F IS 
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KF US ^  +  (I + KF Hg T  - KF HF) x.F" 
+ KF Jis 

and thus the augmented state vector after incorporation of a measure- 

ment is given by: 

+ -, 

^F J 

I  - T K H 
F  S 

F s 

S (1!i HST) 

I + KF I!s T - Kp HF 

-T Kr 

LKp 

^S 
(4-18) 

( or 

y  = A ^  + B Zs 

where matrices A and ß are as defined in equation (A-18). 

The covariance matrix r(t) is updated by a measurement as follovs: 

+ +    +T P       =     E {    v     v =    F,   I   (A v~    +    Bvr)(A v       +    Bv   )   T -?;' 

P+    =    E       (A y       +    B vs) (y T  AT    +    v^  BT) 

=     E    |A v     v T AT }        +     E   I  ^ Vc   v~     A' 

+     E | A       v"  v,,1       B    j +    E   I B  vs vs
T       BT 

60 

;----;   -     ■'■---  ^■■'■■■-■•-■--    ■      ■-      ■■   -■   ^.■--■--■-*-^   ^^-^^--^^^n^^-J^^-;,^-^^..^^'^. ^.^i^t,^^^ ^....l.-:   iffl 
 ; 1 ^__ ; ■     ■  ■ . 



^u.^iJWJMlvJMS^I'WW.gW^W^Wtt 

GA/LE/7A-3 

A E I y y~T [ AT + B E  v y T  AT + A E | y" v^1 J BT 

+ B E { vs vs
J (4-19) 

Now, the noise vector is uncorrelated by hypothesis with the state Xq 

and the state Xp and therefore the transformation of Xp> T Xp«  Similarly, 

the estimate x,. and vs are uncorrelated which imnlies that v^ and v_ 

are uncorrelated.  Thus the second the third terms in cnuatirn (4-19) 

above are zero leavinn: 

+       - T „T 
P  ■= A P A  + B Rs B (4-20) 

Summary of Pronap,ation and Update Equations for Covariance Analysis 

The equations for prcpapatln;^ and undatinp, tlie covariance matrix P 

are summarized as follows: 

Propagation: 

P(t) F(t) P(t)  + P(t)  FMt)  + G(t) 0s(t) G
T(t) 

where 

P(t)  =  E  y(t) yT(t) 

^t)   ^t) y(t) 
- 

e(t)  =  (xs(t)  - T xp(t)) 

b    °1 
Fs(t)    (Fs(t) T T Tit)) 

F 

FF(t) 
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r- G(t) Gs(t) 

Update; 

P+(t)  =  A(t) p-(t) AT(c)  + B(t) Rs(t) B
T(t) 

where; 

A(t) 

I - T KF(t) IIs(t)   T KF(t)  GlF(t) - Hs(t) T) 

KpCt) lls(t) I + KF(t) Hs(t) T - KF(t) IIF(t). 

( 
B(t) =  -T KF(t) 

^(t) 

Application of Covariance Analysis to Extended Kaltnan Filter 

The problen under study is non-linear and in section III it '.-.■ns 

shown that the equations could be linearized about some reference 

trajectory.  Application of linear filtering theory to the linearized 

equations resulted in the Extended Kaiman Filter.  The above eauations 

for propagation and update for the matrix P(t) are linear hovever and 

it is neccssarv to examine the method of implementation of these equa- 

tions to a non-linear problem.  The state equations for both trutli and 

filter models must be linearized about the reference trajectory.  The 

resulting linearized equations v/ill be used in the above covariance 

analysis equations.  The results of the analysis will therefore bo 
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c highly dependent on the assumption of linearity, and in order for these 

assumptions to remain valid, the interval between measurements must be 

made small compared to the system truth model time constants, and per- 

turbations about the assumed nominal trajectory in the interval, must 

be small. 

Finally, it should be noted that the trajectory linearization is 

carried out about ^(t).  In a practice, if linearization were required 

then x.p(t) would be used.  However neither Xn^) nor iÜF^ will be 

identical to the true system state x^Ct) which is never available and 

ideally linearization would always be carried out about xT(t). 
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V.  INITIAL CHOICE OF FILTER MODEL 

Objective 

The development of the true system state and measurement equations 

in section II resulted in a 61 state truth model which used 5 measure- 

ments.  The objective of this section will be to find a filter model 

by simplifying the truth model equations and thus reducin", the model 

state dimension.  The filter model will then be evaluated by the co- 

variance analysis method described in section IV. 

r 

Filter Model Sta_te_ Eouat^ons 

Examination of the truth model state equations summarized r.t the 

end of section II shows that the basic system dynamics is renresc.nted 

by the states 1 to 6 and 9 to 14.  States 7 and 8 were introduced co 

model the uncertainty in drag atid solar pressure perturbations respec- 

tively due to the vehicle size and shape.  The remaining states 15 to 

61 were introduced to model measurinp, device uncert.i'nties in the 

measurements of angular trncl.ip? rates, tracker acceleration, range, 

and tracker angular deviations. 

Siviiplification of Enuat_ions 1 to 6 

Truth model state equations 1 to 6 describing the propagation in 

of the vehicle orbit are: 

Xj     =    X, (5-1) 

x2   =   x5 (5-2) 

X3      K      XG 
(5-3? 

6A 
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r X^ - Agj + Adj + As1 + Amj + Apj + W1      (5-4) 

X5 - Ag2 + Ad2 + As2 + Ain2 + Ap2 + W2      (5-5) 

X6 "    Ag3 + Ad3 + As3 + Ain3 + Ap3 + W,      (5-6) 

Consider the low orbit problem which is investigated in particular in 

this study. The basic orbital profile actually tested serves as an 

illustrative example.  The vehicle considered is in a polar, circular 

orbit with an altitude above the earth's surface of approximately 200 km. 

For this orbit, consider a typical small vehicle with a ballistic 

coefficient of 0,015 m2/k^ and a solar pressure coefficient eauivalent 

to a vehicle with a projected surface towards the sun of approximately 

10 m2.  Under these conditions, the terms in equation (5-4) for example 

^ would have deterministic values of: 

Ag,  = -7.55 m/s2 - Acceleration due to full rravity 

Adj = -9.0 x 10  m/s2 - Drag perturbation 

Asi ■» +2.0 x 10-9 m/s2 - Solar perturbation 

Am) a    +5.0 x 10" m/s2 - Lunar perturbation 

-9 Api = -2.0 x 10  m/s2 - Solar pressure perturbation 

where the sun and moon are positioned for worst case effects, and the 

vehicle is lying in the Greenwich meridian at a latitude of approxi- 

mately 30°;^. The white noise driving term V. accounts for Lnmodeled 

effects such as deviations in atmospheric density from the model and 

unmodcled gravitational terms.  Wj would typically be zero mean white 
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c noise with a distribution standard deviation of approximately 10 m/s2. 

The tvo-body point mass acceleration accounts for approximately -7.5A8 m/s' 

in Agj.  The appropriate terms driving equations (5-5) and (5-6) have 

similar relative magnitudes. 

The model proposed for the filter therefore assumes a two-body 

orbit and neglects drag, luni-solar perturbations and the polar pressure 

perturbation.  For long orbital times, this would of course be a poor 

approximation, but a typical tracking pass with the assumed profile 

lasts for only l/20th of the orbital period. The errors introduced by 

these approximations are accounted for by increasing the strength of U 

-3    o 
to give a distribution standard deviation of approximately 2 ?: 10  m/s . 

TVie resulting state equations are: 

X  = X 
1      4 

X  = X 

X., = X, 

(5-7) 

(5-8) 

(5-9) 

-P® Xi 
+ Wi 

'Um   *2   + 
T- 3 

(5-10) 

(5-11) 

•X6  = -V*  h. 
~~3 +     W3 lv 

(5-12) 

where u   is the earth gravitational constant and r  is thr distance 

from earin center to vehicle; 

^7 + x,/ + x. 
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c Simplification of State Eciua_t_ion_g_^_and _10 

The truth model state eauations 9 and 10 jre; 

^ - '5 % 
2 Vr w    + OJ   w 

R    LSY     LSZ T> 

6e 

R   'X V 
+ WLS. [cSn OVp - «SEU;,, J 

(5-13) 

b> 
LS. 

1 
R ^x 

2 V r 
R    LbZ 

wT „  Wr LSv Y  -X 

R   rX     ^SY L     lY TZ-IJ 

(5-14) 

c 

where the bracketed terms { • } resul»: from usinp, tracker accelerations 

Aj-^., A^, , Aj.^ and angular velocity aw, rather than true line of sight 

parameters ^Q^,  Arel , Arel , and a)LS .  For high accuracy tracking, 

the angular deviations 6z  and 6n will have magnitudes on the order of 

10 " rad or smaller.  For the profile under test therefore the bracketed 

terms have magnitudes near 10'"11 which are approximately 5 orders smaller 

than the magnitudes of U)LST. and ^5 •  Thus for the filter, the bracketed 

terns are replaced by zero mean white Gaussian driving noises each having 

a 1 - sign.a value of approximately 10  .  The resulting filter model 

equations are: 

ULS, 
1      A 2  Vi 

R ^Sy 
+ to u>T       + (5-15) 

"LS- - Ar 
R    rY 

2  V, 
^V. \sy >x 

+    W (5-16) 
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The  remalnlnp, state enuations are; 

6n 

6E 

LS. 

"LSy  "  ^Ty +  6ri WTX 

(5-17) 

(5-18) 

(5-19) 

Vr = Arx + R(u:LSy- + ^Sz ) +  in A^ - U  A^  (5-20) 

Equation (5-20) can be sirplificd by rer.ovlnn Che terr.s 'n A 

and 6c Ar .  Since in and öc are .snail, the f.-o ter^s have na'-nituc'cs 
X 

• • 
5 orders smaller ti.an Vr. The filter state equation for V- tims bccor.es; 

Vr  =  A^.  +  R(WLSY2  + ^■)     + Hc (5-21) 

where V.v is a white Gaussian noise with a distribution standard deviation 

of approxinatelv 5 x 10 m/sec. 

Thus far, the orbital dynamics have been sirnlified, and the state 

equations for the true propagation of the line of si^ht angular velocities 

and Vr have been simplified.  As a result, the first 1-; truth mcdol state 

equations are reduced Co 12 filter model state equations where the tro 

equations for the ballistic coefficient and solar pressure roeffjeirnt 

are no longer required. 

Filter !!odel ?!e_a.t'.ure:-K-n_t "nuations 

The system truth -.ode] j-easurem'-nt equations are surx-arired in 

section II.  The 9 equations were reduced to 5 by considerin;? tue "'^a-- 

surei.ent of w«, , .'.-, , .•'.- , and An-  to be nararetor r-.ea~:ure~.nts u-hic!i 
':■:  'x  -y     ".'. 

could Le incorporated into '".'..e state equation; "e.-isure: er C   i.nua-- 

Lions   are  all   situilar   in   tiuii   each  eMiation   ri ^r.-   ■i'i. s   a  '.ea.su! f:"''nl   of 

68 

^üj^riii-h^inWH 
TTI^—•-1'-II iiiiiitfiiiiiiM^Mr,°Lr,i'Mm* 



mm ^„..^-.giWiyiiMiijiiiiiiiiJiiiiiijiiiiiji HI   ii.  "" " 

GA/EE/74-3 

( 
the true quantity corrupted bv other factors.  For example, the measure- 

ment eruation for w-r is repeated below: 

t^,  = WTY + Bgsfy i^  +   E  Bgrny^^ k^    +  C 
SY 

•[ 
(5-22) 

A Cgma WT + V, 

( 

( 

In this equaticp, ov,-  is the unknown quantity to be measured.  The 

remaining terms are non-deterministic.  The term Bgsfv WT ^-^   t''1G pro- 

duct of a random bias and the deterministic but unknown quantitv w^ . 

Thus the product is also non-deterministic.  C„ Is modeled as a first 

order exponentially time correlated random variable.  In fact, there 

are four types of quantity, deterministic, random bias, first order 

exponentially correlated random variable and pure white noise. 

For the truth model, in the absence of better information, the 

random bias terms are chosen to have .^ero mean, i.e.  x = 0, with 

variance derived from experirental data.  The gyro drift parameters 

would also be derived using experimental data.  The white noise term 

V2 accounts for unnodolea effects such as higher order non-linearities. 

For the filter model, it is assumed that in all the measurement equations 

the total effect of the non-deterministic terms can be accounted for bv 

a simple white noise added to the deterministic term in each tauation. 

The white noise is Crassian, with zero mean and variance chosen to be 

approximately equal to the variance of the sun of all the non-deteminisLic 

terms. 

In practice, the additive white noise term increases the uncer- 

tainty in the measurement.  If the above filter measurement rodel river, 
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poor   peiformancü   in   the   covariance   analysis,   it  rr.nv  br   possible   to 

increase   the  variance   of   Li.e  u'hitc   nclsc   furtiior,   thus   indicating  addi- 

tional   uncertainty   in   the  r.easurnraent   model.     Alternatively,   the  node! 

could  be   clian^cd   to   include   just   the   "vro  drift   terns   for  exanDle. 

As  a  first  attc-npt  at  r.odelln;:  houever,   the  additive  white noise rr.odel 

has   tiie   sir.plest   form. 

Sur.r.ary  of  State _and  ileasureront   Ec;ua11 ons 

Usin^  t'ne  si:..r.le  measurement  models  described   above,   the   filter 

state  equations  and measurement   count ions  are: 

State  r.guatj_ons 

(1) Xj     =     Xu 

(2) Xn     =     X, 

(3)     X, 
b 

W    ^u    = ,      'f    Wl 

rv 

(6)     X, 
-P(B_X3 

rv 
+    W. 

(7)     u. 
LS, 

2 V 
L\SY    +    ^LSz^    +    ^ 

(8)     u)L ^Z R       rY 

2 V 
I "LSz    "     "LS^ +    VJ 
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CJ)     !n    =    s.- LS, i 7 1 'S 

(10)     6c ur Q,.     ~     ^Tv.     +     in  OUT 

(11)       R 

(12)     Vr    =    A-      +    lUc        2     ^ LLS 
2)    +     Wf 

Measurenent  Knuations 

(1)     c^j      =     "T,    
+    vl 

(2)       ^ly      ^       ^TY      
+      V2 

(3) ^     +     V3 

(4)     AT =    A^       + 
y.\i Y '-M 

(5)     A. 
^M ^ +     V, 

(6)    K        =    AT      +    V6 

(7)     6cM    =     K1   6c    +    V7 

(8)     6nM    =     K2   6n    +    V8 

(9)       RM    =    KR R    +    V9 

( 

The measurements  of A™   ,  /U,   ,   A^,    and UJT    as  in  the   truth model, 

constitute measurements  of  system parameters.     The measured  narameters 

car.  thus le  substituted  into  the  state equations  so  that  the  actual 
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measurement equation will not be U3cd ns part of tie filter measurement 

model.  ;,'ov;, if thia is so, there Is no real need for the sii.pl if led 

measurement models described by equations (1), (4), (5), and (6) except 

for the purpose of linearization.  In linearizinr the state equations, 

account must be taken of Che fact that a measurement is in fact a 

linear or non—linear combination of system, states.  Thus in order to 

use the 12 state model, the simple measurement model must be assumed. 

The remaining measurements are direct measurements of states of 

the svstc-m, or in the case of w„,  and uT , pseudo-measurements of states 
iY      Z 

of the system.  Equations (2), (3), (7), (8), and (9) constitute the fil- 

ter model measurement vector. 

Appendix C siiou's how the state and measurement equations of the 

filter model are linearized for application to a covariance analysis 

of the Extended Kaiman Filter. 
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V 

VI.     RESULTS 

Test Slmulatiun Data 

Appendix D lists the truth model simulation parameters used for 

the initial evaluation of the filter model. The data corresponds to a 

typical set of measuring instruments.  SOTTP simulation parameters were 

changed to improve the measuring instruments to 'state of the art' quality, 

and the filter model reevnluated.  The actual changes will be discussed 

later. 

Test Objectlva 

The primary test objective was to demonstrate that good performance 

can be obtained using the filter model described in section V under 

varying conditions.  These conditions were representative of differing 

qualities of measuring instruments.  In order to achieve this objective, 

the filter model was first 'tuned' against the set of simulation instru- 

ment specifications described in Appendix D. The process of tuning 

involves adjustment of the Q and R covariance matrices in the filter 

model, often by trial and error, until satisfactory performance is ob- 

tained.  Conceptually, the tuned filter is the best representation of 

the truth model, by the simplified filter model.  Once the filter model 

had been tuned, and evaluated, some of the measuring parameters were then 

changed in the truth model and the filter model retuned to account for 

the changes. 

Tuning the Filter Model 

The covariance analysis method described in section IV compares the 

true estimation error variances resulting from the use of a particular 

filter, with the error variances predicted by the filter itself.  Thus, 
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(. 

Kiven a state vector estimate x(t) where the true state is  xt(,t) ,   the 

error is normally expressed by the covariance matrix: 

P(t)  =  C  [x(t)-xt:(t)J [i(L)  - xjt)] T 

Since this matrix may be of large dimension, it is usually more con- 

venient to examine the square root of each diagonal element of the matrix. 

Thus the error in XjCt) is given by: 

4' pu(t) . NM[^(t) - vt,]^ 
which is the 1 - sigraa value (standard deviation) for the error in x,(t). 

Denoting the true error in the estimate of a state as the system error, 

and the error preducted by the filter as the filter error, then the 

objective of tuning the filter model is to ensure that the system error 

and filter error have very nearly the same magnitude.  It is quite pos- 

sible for the system and filter errors to simultaneously diverge, indi- 

cating an unstable error.  Even in this circumstance the filter is still 

tuned, provided the two magnitudes are equal.  In practice it is usual 

to tune the filter so that the filter error standard deviations never 

underestimate the system error standard deviations.  In this way, the 

filter model accurately represents or slightly overestimates the real 

error and therefore allows some margin of uncertainty.  Fig. 6 and 7 show 

a typical situatior where the filter error for X(14), which is the range 

rate Vr, converges after 100 seconds to approximately 1.5 m/sec, whereas 

the system error is in fact 2 m/sec after 100 seconds.  In this case, the 

filter is underestimating the real error and although its performance 

appears good, in reality it may not be acceptable. The process of tuning 

the filter is somewhat arbitrary in that several variables can be ad- 
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justed.  For example, the initial condition en the variance of a state 

will affect its transient behaviour, the measurcircnt and state driving 

noise covarianccs .'ill affect both the transient and steady state beha- 

viour and in general there will be one set of conditions which produces 

the best performance.  This set of conditions can be highly interdependent 

so that the process of finding the correct values usually requires an 

element of trial and error 

Transient Bch.-viour of Filter 

The transient behaviour of the filter depends on three factors, the 

choice of initial conditions, the measu'-ement noises, and the state 

equation driving noises for the filter model. 

Initial Conditions The choice of initial conditions on both filter 

error and system error can severely affect the transient behaviour of 

the filter and can in fact cause divergence.  Figs. 8 and 9 show the 

behaviour of the filter and syster, errors respectively over a 200 second 

time interval.  The state is the inertial satellite position element Xj. 

c 

The filter error initial condition A/P..(t ) was chosen as 100 km while 

the system error initial condition was chosen as zero.  The initial 

transient subsides after approximately 120 seconds, and both curves 

begin to show a divergent characteristic.  It is interesting to note 

that during the divergence, the filter appears to be reasonably well 

tuned in that both curves show similar magnitude errors, but the filter 

is overestimating the error by about 20%.  In this case, the divergence 

is not caused by the poor choice i f initial conditions.  Figs. 10 and 11 

show the same state Xj with a different set of initial conditions on the 

filter and system errors respectively.  Again, the divergence is apparent, 
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and the initial transient behaviour is r.uch improved. 

Mcasurcrgnt and Driving iloises  Connidcr the state OUT ^ which is 

the line of sight angular velocity alonn the line of sight y - axis. 

Appendix C gives the state equation driving noise standard deviation 

as 10"  rad/sec2 and the measurement noise standard deviation as 

l-G x 10~5 rad/sec.  These values uere derived by  .nsidering the truth 

model simulation data in Appendix r^and compensating for the effect of 

all the simplifications from truth model equations to filter model equa- 

tions.  Using these two values, the filter diverged rapidly.  Several 

test runs were made in which the noise figures wer- adjusted to improve 

performance.  Figs. 12 and 13 illustrated the behaviour of the filter 

using a driving noise standard deviation of 2.7 x 10"' rad/sec and a 

measurement noise standard deviation of 6'5 x 10  rad/sec.  In this 

case, an oscillatory transient occurs with a A0 second period and 100 

second settling time.  By further adjustments, the transient was almost 

removed.  Figs. 14 and 15 show the final performance curves where the 

driving noise standard deviation was 5 x 10-7 rad/sec2 and the measure- 

ment noise standard deviation was 2 x 10-e rad/sec.  The example illus- 

trates that it is often necessary to carry out very fine adjustments to 

tune the filter model.  Figs. 14 and 15 were obtained after 8 distinct 

adjustments,where each adjustment required a computer run to show Che 

performance.  Also, it is sometimes necessary to increase the strength 

of the state cruation driving noises very considerably, in this case by 

4 
a factor of 10 , to obtain good performance. 

Determination of Vehicle Orbit 

In the truth model formulation, no direct measurements of the vehicle 
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inertial position and velocity art included.  In fact such measurements 

could not be made directly fron the vehicle without using an inertial 

navigation system.  It is feasible that rnoasurewnts could be taken by 

a ground station and transmitted to the aircraft during the pass. 

However, the system was tested assuming only measurements of tracker 

acceleration, tracker angular velocity, misalignment angles, and range. 

The inclusion of further measurements might be a logical extension to 

this study.  It is interesting to observe the behaviour of the filter 

with the present formulation.  Figs. 1C and 11 illustrate the error stan- 

dard deviation for inertia], position Xj, for the filter and system respec- 

tively.  Figs. 16 and 17 show a very similar trend in X and Figs. 18 and 

19 illustrate the error in inertial velocity state XL, for filter and 

system ;espectively.  The typical error standard deviation in a position 

component is about 40 km and that in a velocity component is about 190 

n/sec.  The following observations can be made: 

a. The transient performance is ex'remely slow. 

b. Initially (see Figs. 18 and 19) the measurements have no effect 

on inertial velocity errors. 

c. As the inertial position estimate improves, the measurements 

begin to give an improvement in the inertial velocity esti- 

mates.  The time lag is approximately 40 seconds. 

d. The improvement in the inertial velocity estimate during 

the complete 200 second run is relatively small.  With an 

Initial condition of 200 in/sec error standard deviation, the 

final error standard deviation is 193 m/sec. 

e. Towards the end of the 200 üecond run, the position estimate 

errors begin to show a divergent characteristic.  This could 
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L 

be due to the tact that as range increases and the satellite 

goes out of view, the neasurements begin to have less effect. 

The main conclusion to be drawn from these observations is that 

the orbital estimate is not significantly improved bv the measurement 

information.  The latter is coupled into the orbital state eauatlons via 

the relative acceleration of the vehilce tc the aircraft, expressed In 

tracker coordinates.  This in turn is a function of the aircraft inertial 

acceleration, the vehicle inertial acceleration which is dependent on the 

vehicle inertial position, and the coordinate transformation matrix from 

tracker to inertial coordinates, which is assumed known.  The coupling 

is  complex:  if a measurement of w^s  improves the estimate of that state, 

then this improvement is coupled through Ar into the vehicle inertial 

position estimate.  Recalling the filter model state equation for "LSV1 

ÜLS, 
-Arz    2 Vr 

R R   "LSY 
+ wLSz ^'X + W (6-1) 

It would seem equally important, since A  is a function of vehicle iner- 

tial position, for the estimate of the vehicle inertial position to be 

good in order to maintain a good estimate of wj g .  This loop in the 

coupling will be discussed later. 

Tracking Accuracy 

The accuracy in the tracking is expressed by the standard deviation 

of the errors in the misalignment angles 6c and 6r\.     These errors are in 

turn affected by the errors in line of sight angular velocities, range, 

range rate, and, as already discussed, the vehicle state.  Figs. 20 and 21 

shov; the standard deviation of the error in the misalignment angle 6ri. 

The transient is short and a mean steady state standard deviation of 
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0.15 x 10_l* rad is achieved.  This translates to about 9 ra off target 

center for rraximum range of about 600 km, and about 2 ra for minimum 

range of about 100 km. 

Effect of Orbital Estimate To determine how the orbital estimate 

improves or degrades the tracking, consider equation (6-1).  The Ar 

term effectively helps to provide a prediction of the range in uup 
Y 

between measurements.  If Ar is incorrect bv say 1« then the change 

in Wjo between measurements will be incorrect by a similar relative 

magnitude.  When the measurement is taken therefore,the antenna will be 

misaligned and some portion of this misalignment will have been caused 

by the original error in Aj- . The measurement information in turn 

couples back through A  to improve the estimate of vehicle inertial 
Z 

position.  The loop is of course continuous and the above simplified 

analysis was made to illustrate the following point.  Given a worst case 

situation, the typical error standard deviations in inertial position 

of 40 Li as in fact produces an error in Ar„ of only 17.    Propagation 

of this error over 2 seconds results in the misalignment angle of about 

2 x 10~6 rad.  This is small compared to the error standard deviations 

shown by Figs. 20 and 21.  In addition, it represents the worst case 

effect.  Supposing however that a tracking accuracy equivalent to a 

misalignment angle error standard deviation of 10~6 rad were required. 

The errors in inertial position would then be significant. There Is a 

specific conclusion however which is quite surprising.  To achieve an 

error standard deviation of 10~5 rad In misalignment, an error standard 

deviation of 40 km in Inertial position can be tolerated, provided the 

measurement update interval is small, i.e. of the ordei: 2 seconds or less. 
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Modifications   to  Truth Model 

(. 

Objective.  The purpose in changlnp, the truth model v.-as to demon- 

strate that the filter would perform over a reaponable ranp,e of measuring 

device precision.  The tracking achieved with  the baseline simulation 

parameters resulted in an error standard deviation in dc and 6n of 

0.15 x 10"' rad.  This is equivalent to an error standard deviation of 

9 m off target at maximum range and 2 m at minimum range.  Choosing 

arbitrarily a requirement for 1 m at maximum range implies that the 6e 

and on error standard deviations should be less than 1*7 x lö~6 rad at 

maximum range.  The objective therefore was to modify the tn. th model 

to find the necessary measuring instrument ouality to achieve this re- 

quirement.  In so doing, the filter would be evaluated over a differing 

range OL meai'urement parameters. 

Approach  The approach taken was to investigate the effect of 

improving the measurements of line of sight angular veloclcy, tracker 

misalignment, tracker acceleration, aad range.  The tracker acceleration 

and range measurements were first investigated.  Adjusting the truth 

model measurement parameters to make these measurements perfect had no 

d-'scernable effect on the tracking accuracy.  In fact, the measurements 

could be degraded by a factor of 2 in the case of range and by a factor 

of approximately 5 for acceleration, before tracking accuracy became 

affected.  The critical measurements were therefore those of line of 

sight angular velocity and misalignment angles. 

Adjustment of Angular Velocity and Misalienment Angles  The process 

of adjusting the truth model measurement parameters was slow and tedious 

since each adjustment required a returing of the filter.  The gyro drift 
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term in the raoasurenents of anpulnr velocities was found to be the largest 

single source of measuremont error.  This terra was adjusted progressively 

from ICT6 rad/sec to 10~7 rad/sec.  After each adjustment the filter was 

retuned.  The resulting error standard deviation in the estimate of 6£ 

is shown by Figs. 22 and 23.  (N'ote that 6E and ön have identical error 

characteristics.)  The mean steady state error standard deviation'was 

5 x 10-5 rad, which is equivalent to an error standard deviation of 3 m 

off target center at maximum range.  A drift of 10~7 rad/sec is in fact 

close to the region of current 'state of the art' gyros. A further im- 

provement in gyro drift to 0r5 x 10"7 rad/sec did not significantly im- 

prove the estimates of 5c and 6n.  It was therefore concluded at this 

point that a further improvement in the estimates of 6c and 6n could only 

be obtained by improving the measurements of those quantities. 

Tigs. 24 and 25 again show the error standard deviations for the 

misalignment angles (Sc and 5n. These performance curves were obtained 

by improving the angle track scintillation noise from a standard devia- 

tion of 10~6 rad to 10-7 rad and totally removing the angle track bias. 

The resultant error standard deviations for öc is 2 x 10~6 rad which is 

equivalent to an error standard deviation of 1*2 m off target center at 

maximum range and 0-2 m off target center at minimum range. 

Finally, Figs. 26 and 27 show the overall improvement to the error 

standard deviation for the estimate of vehicle inertial position X,.  The 

figure has been improved from about 40 km to about 20 km. Fig. 27 shows 

the true improvement to be nearer 10 km.  This implies that the filter 

is overestimating the error by a factor of 2 and requires further tuning. 
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Surrmary of Effect of Truth Model Moc'lflen11 ons 

To achieve the requirement of approxinatelv 1'7 x 10"6 rad for the 

error .'Standard deviations in the estimates of öc and (5n, it was found 

necessary to (1) reduce the gyro drift standard deviations from 10"6 

rad/sec to 10~7 rad/sec, (2) remove tie anple track bias errors, and 

(3) reduce the anple track scintillation noise standard deviation from 

10 c' rad to 10  rad.  Fig. 28 shows the family of error curves des- 

cribing the adjustments made and the resulting performance.  Each point 

on the curve represents some five computer runs for the system. 

Clearly, these results indicate some stability in the filter formu- 

lation over a small range of measurement performance.  It is emphasized 

however that only a small group of measurement parameters were tested and 

the results are by no means general. 

Various recommendations for modifications to the truth model formu- 

lation will be made in the next section. 
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vii.    RI:CO:IMJ::IDATIONS ^;D CONCLUSIONS 

Addition of Further Measurements 

Coordinate Frames  There are four basic coordinate frames used in 

the problem, Che earth centered inertial and earth centered rotating 

coordinate frames which are related by the earth rotatloi. rate, and tht 

line of sight and tracker coordinate frames which are related by the 

misalignment angles öe and 6n.  The relationship between the tracker 

coordinate frame and the inertlal earth ce->tejed coordl :ate frame was 

est-ablished by assuming that the tracker base could be maintained 

inertially stable, and that the two angles 0 and 0 (see Fig. 1, section 

II) were available (i.e. through perfect measurements). 

It is somewhat unrealistic to assume that perfect measurements of 

6 and 0 are available.  In practice some type of resolver or Integrating 

device would be used and stochastic modeling techniques might be necessary 

to model the device outputs accurately.  Thus the inclusion of a realistic 

measurement model for 6 and for 0 would be desireable. 

Orbit Determlnr'tion  The typical aircraft engaged in the long range 

satellite trackinr lOle would proba'ly be equipped with an inertlal navi- 

gation system (J.^S) to provide aircraft inertlal position information. 

Now let R_ be the range vector from aircraft to satellite expressed in 

inertlal earth centered coordinates.  Then if the aircraft inertial posi- 

:ion  vector is R. and the satellite inertial position vector is Rg 

RA + R1 —A    — 

X2 

X3 

c 
I     IT 

RA 
+ CT^ 
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Thus accurate knowicdpe 

R 
For perfect tracking, R1 Is the vector  0 

0 

T  1 
of R , C which is a function of 6 and 0, and R , provides an accurate 

measurement of the satellite inertial position.  Thus the measurewents 

of u and 0 coupled with the II.'S measurement of RJ[ can be used to provide 

a measurement of Rg.  Improvement of the estimate of satellite inertial 

position would lead to improvement in tiie estimate of satellite inertial 

velocity which in turn would lead to an improvement in the accuracy in 

orbit determination. 

How the sensitivity of tracking accuracy to the accuracv of the 

orbital estimate was not totally established.  It was clear that the 

critical measurements were those of angular velocity and anqular devia- 

tions.  However, using 'state of tie art' measuring devices, it may 

still be possible to achieve improved tracking performance with a better 

orbital estimate.  The inclusion of 1US  position information is there- 

fore considered desireable. 

r 

Alternate Methods cf Modeling 

Extending the above discussion further, if INS velocity information 

were also available then an alternate model formulation is nossible.  The 

state of the satellite vehicle is comoletely dascribed bv inertial 

position and velocity vectors.  Simile "ly, the aircraft state is com- 

pletely described by inertial position and velocity vectors.  In fact, 

the relative position and velocity vectors from aircraft to satellite 

would also be completely described by these four vectors.  The tracking 

problem is in essence a problem of estimating the relative position and 

velocity vectors, so that one method of modeling the svstem would be to 

use inertial states for the aircraft and satellite. This would result 
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/ 
V 

in a 12 state model which is of the same dimension as the current filter 

model and additional states could be included if necessary to account 

for measurement parameters. 

Considering the geometry of the tracking problem, the inertial 

formulation might be better conditioned numerically vhen target and 

tracker are widely separated in the inertial coordinate frame.  li ..he 

target and tracker are in a vlose configuration, in which tie magnitude 

of Che range vector is small compared ot the magnitudes of the two 

inertial position vectors, then modeling the problem in the line of 

sight coordinate frame would probably be better conditioned numerically. 

When tracking a low orbit satellite, both situations exist.  Initially, 

as the satellite appears over the horizon, the two vehicles are widely 

separated inertially.  As Che satellite passes near to the aircraft 

however, the range vector can become small in magnitude.  The incorpora- 

tion of aircraft inertial position measurements into the present formu- 

lation is one mechod of meeting both situations. 

Method of Analysis 

The filter was tested using the covariance analysis method. The 

performance results are therefore valid only if the various approxima- 

tions and assumptions described in section IV are also valid. The 

Monte-Carlo analysis method does not make such anproximations and 

assumpCions. The method involves making multiple runs using the non- 

linear state equations and artificial!  generated white Gaussian noises. 

Thus, provided a large number of runs are made, a general run performance 

trend can be obtained.  The usual problem with the Monte-Carlo method is 

the practical limit on computational time.  If the method 's compared to 
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the covarlance analysis method however, this is not such a severe 

problem.  The latter generally requires a verv large and complex com- 

puter program and multiple runs are often necessary in any case, to 

ensure satisfactory performance of the program.  It should be recalled 

also that the covarianoe analysis is the first step analysis for a 

filtering problem.  It is therefore recommended that further analysis 

of the problem should be carried out with the Monte Carlo method. 

Summary of Recommendations 

a. The addition of realistic measurements for the angles 6 and 0 

in the coordinate transformation matrix Cj. should be investigated. 

b. Measurements of aircraft inertial position and velocity should 

be investigated and incorporated if performance benefits so dictate. 

c. The possibility of system modeling entirely using inertial 

coordinates should be investigated. 

d. With the present formulation, further work could now be carried 

out using the Monte-Carlo analysis technique.  If the filter is signi- 

ficantly redesigned, then the covariance analysis method should again 

be used as the first step analysis. 

Conclusions 

c 

The work carried out in this study falls into three categories; 

a. Development of the truth model and filter model state and 

measurement equations. 

b. Description of the Extended Kaiman Filter and covariance 

analysis method equations, 

c. Testing of the filter. 
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Part c. represents the majoritv of the work.  Where possible, 

existing conputer programs vero u'-.ed.  This was done to save program 

development tine which essentially detracts from the real thrust of 

Che study.  However, in retrospect, it might have been better to develop 

new programs since the redevelopment of existing programs was a verv 

time consuming task. 

The most difficult part of the actual testing was the filter 

tuning.  This basically involved changing various parameters in the 

filter model to maximize filter performance.  The task is similar to 

an optimization problem where several parameters are simultaneously 

adjusted for optimum filter performance.  Fince each computer run 

required considerable computational time and storage, the optimization 

process was slow and time consuming. 

As a whole, however, the study was an informative experience.  There 

is much work still to be done in the area of aircraft to satellite track- 

ing, but this study has certainly indicated some of the areas where pro- 

blems can be expected, and some of the methods through which thev can be 

solved. 

110 

maaiaaaaitaaaaiaiMattt 



ffB^iyw'Mjw.w.twumw^ 
Vft* ^,^ ^^:g7^j^•^^^•?^^yxfg'ayg^^t"'!:^T,'' "■*?' 

GA/';E/74-3 

Blhl lof>rnphy 

Bate, R. et al, Fundanentals of A^strodvnamlcs, New York:  Dover 
Publications, Inc. 

Asher, Robert D. and V.'atjen, David I'., Kalnan Filtering for Precision 
Pointing and Trackin" Apnlic^at Ions, AF Avionics Laboratorv, V'right- 
Patterson AFii, AFAL Technical Report to be published. 

Pearson, John B. and Stear, F.dwin B. , FaJran Filter Applications in 
Airborne Radar Tracking, IEFC Transactions, Vol. AFS-10, No. 3, 
Hay 1974. 

Fitts, John M. , Aided Tracking gs Applied to iliph Accuracy Pointing 
Systems, ILEE Transactions, Vol. AES-9, No. 3, May 19'?3."' 

Pearson, John B. , Basic Studies in Airborne Radar Tracking Systems, 
PhD Dissertation, University of California at Los Angeles, Septeraber 
1970. 

Wrigley, V/alter, et al, Gyroscope Theory, Desicn and Instrumentation, 
Cambridge Massachusetts and London England, MIT Press, 1969. 

Broxneyer, Charles, Inertial Navigation rystemF, New York, McGraw- 
Hill, 1964.       "       - -- 

10, 

Baker, Robert M. L. , Jr., and Makemson, Maud W., An Introduction to 
Astrodynaniics, 2nd Ed., New York, London, Academic Press, 1967. 

Baker, Robert M. L. , Jr., Astrodynan-jcs Applications and Advanced 
Topics, New York, London, Academic Press, 1967. 

Escobol, Pedro R. , Methods of Astrodynamics, New York, London, John 
Wiley & Sons, Inc., 1968, 

C 

11. lierrick,  Samuel,  Astrodynamics,  Vol.   II,  New York,  Van Nostrand 
Reinhold Company,  London,  1972. 

12. Heditch,  J.   S.,Stochastic Optirul Linear Estimation  and Control, 
New York, McGraw-Hill,   1969.    " " " """ ""  ' 

13. Maybeck,  Peter  S.,  Notes  for  a  Course  in Nonlinear  Filtering Theory, 
Given at  the Air Force  Institute of Technology,  WAFB,  Course Title 
EE7.66,  1974. 

14. D,  Appolito,  Joseph    A.,  The  Evaluation of Kaiman  Filter Designs  for 
Multisensor Integrated Navigation Syjscenis,   Report prepared by The 
Analytic Sciences Corporation  for  the Avionics  Laboratory at VPAFB, 
Technical Report AFAL-TR-70-271,  January 1971. 

Ill 

i.ii;.n.iilrMifV-.l^^>'^,-^-lt^u'^^^^^ '   '^'■■'"'"i'fti 
. m-rtiririt- .■JlW|r^-.-^^^^-^i^i<'^-r'i''ir-WM*i 



'jwvis^v^^TJjrt^ir'i'w,"'"«^"«?-^ 

r.A/i:r/74-3 

15. Kayton, Myron and Fried, Walter R. , /Vvionics ^'wir.ntlon Svptens, 
i-icw York, John '.'iley & Sons, 1969. 

16. Pollard, Joseph, J. , OrM ta]_ ParnryM^r PeJ^ernin_at_ion IJV Weighted 

l^JL^ßS^JlL^I-jyP?. PPß-l^ßJ-I'^r-   1.':'Xt'''rin"  -'eChod^,  Thesis sulTmTtTed 
for tue üej;roe of Master of Science, Air Force Institute of Tech- 
nology, V.TAFE, 1973. 

c 
112 

 i ■- --■^-.■■^--- 



rjp p^ V*WB7^!* W^ll^^1',*^!1.^ 
•"«rF,iT>MK7'7 

GA/i:i:/74-3 
1 

Appendix A 

Derivation of Cravltatlonal Forcer; Due  to F.arth     (Refs.   8,   9,   10,   11) 

Fig.   29 below shows  the  incrtial  earth centered  coordinate  frame 

(I  -  frame)   and  the rotating  earth  centered  coordinate  frame   (r -  frame). 

The  two  frames  align when  G    =    0. 

Vernal - 
Equinox 
Direction 

*^Y 

Eauator 

c 

Fig. 29 Inertial and Rotating Coordinate Frames 

Defining the Earth's gravitational potential as U which is a func- 

tion of position Xr, Yr, Zr in the rotating frame i.e. U = ü(Xr,Yr,Zr), 

then at any point in space, the three components of gravitational force 

expressed in the rotating coordinate frame can be defined as Ap  , A_  , pXr     ^Yr 

and Ag„    such that: 
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^X 
3 U 
3x/ 

8Z. 

9 U 

9Y 
c 

9 U 
3Z. 

If U is defined therefore, the gravitational forces in the rotating 

frame can be calculated.  The forces are reouired however in the incr- 

tial coordinate frame so a coordinate transforrr.ation from rotating to 

inertial coordinates must be defined.  Let. C be the coordinate trans- 
r 

formation matrix from rotating  to non-rotating   (inertial)   coordinates, 

ther.. 

cos (G)   - sin (9)   o 1 

sin (e) 

L  0 

cos (e)  o 

1 J 

where: 

e = eg0 + WE t 

eg0= Local Greenwich hour angle at t - 0 

WE = Earth rotation rate 

t = time 

4' 

V. 

and if the force due to gravity in the inertial coordinate system U 

the vector: 
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r A_ 

A 

L V 

then: 

01 

u 8. 

"Yr 

^Vr 

Gravitational Potential Model U(Xr, Yr, Zr) 

The problem under consideration examines the tracking problem for 

a near earth satellite.  In order to express the gravitational forces 

due to the earth for a low orbit satellite accurately, the following 

gravitational potential model was chosen: 

k * m 1 + 
6 
Z 

k = 2 

K 

I 
m = 0 

Pk
(m) (sind,) 

Ck,m C0S^E) 

+ Sk>ra sln(mXE)^ j| (a-1) 

where the terras in equation (a-1) are defined as follows: 

k is the gravitational conrtant for the earth 

m      is the mass of the earth 

r  is the radial distance of the body from the earth center 
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(, 

p   (m) 
k are  Lc^cndre   functions,   that   Is   the   functions; 

P. (x) Pk
(ra)   (x)     =     (1    -    x  ^/2    _d^ 

d  xn 

and Pb;' IS t!-.e Le^cndre polynomial uith argunent x. 

Note that in equation (3), the argument of the Legendre 

polynonials is sin 0. 

X   is the longitude of the satellite with respect to the 

Greenwich meridian 

0 is the geocentric declination angle for the satellite 

The C,. „ and S. „ are harmonic coefficients for the gravitational K y in      K. j ni 

potential such that: 

'k,o = - Ji 
(°) 

and Sk>0 = 0 

and the -Ij^^0^ coefficients are termed 'zonal harmonic' 

Ck m and Sl<- m ave  termed 'tesseral harmonic' if m ^ k, m > 0 

and 'sectorial harmonic' if m = k 

The significance of the terms zonal, tesseral, and sectorial Is 

illustrated by Fig. 30(Ref. 9) 
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Fig. 30 Gravity Hanronlcs 

Equation (3) could be extended to include higher harmonics than 

6,6.  This would largely depend on the type of orbit and the accuracy 

required.  For the purposes of this study, the harmonics up to and in- 

cluding 6,6 are defined to represent the true gravitational field.  Thus 

any filter model which might use a lower order model will be compared 

against this particular truth model, and the inclusion of higher terms 

in the truth model would not significantly improve this comparison. 

Calculation of the Second Partial Derivatives of U  (Ref. 16) 

In order to linearize the state equations for use with the Extended 

Kaiman Filter, it will be necessary to find the second partial derivatives 

of the gravitational potential U with respect to the satellite Inertlal 

position (X, , X2 , X_) measured along the X, Y and Z axes respectively 

of the inertial frame (see Fig. 1).  The analytic calculations of the 

first partials only are long and complex and result in several hundred 

terms.  An analytic calculation of the second partials would be complex, 
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prone to error and too time consuming computationally.  In Ref. 16, it 

was shown that for this type of orbit, a one sided differencing method 

provided an accurate value for the second partials providing the 

differencing step size is  kept small.  A step size of 1 meter was 

chosen since any further reduction did not change the numerical result 

while at the same time, a calculation using 1 meter did not introduce 

round-off errors.  Calculation of these second partials is carried out 

in the rotating coordinate frame to give the matrix of second partial 

derivatives: 

32 U 

92 U 

3 Zr2 

(a-2) 

where the notation indicates the matrix is with respect to the rotating 
( 

frame.  Defining U  as the matrix of second partial derivatives taken 
I 

with respect to the inertial non-rotating earth centered coordii ate 

frame (I - frame) then: 

U. c1 T u, c1 
r    2r r 

C 

32 U 

3 X,' 
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Appendix  B 

Linciarization of Trutji ''odd Stite and Measurcnent Fguations 

Dcfinicions: 

Xj, X2 , X  Inertial satellicc position vector 

X^, X5, X  Inertial satellite velocity vector 

xs' ^s' zs Position vector of sun in eartli centered inertial 

coordinates 

x , y , z  Position vector of moon in earth centered inertial 

coordinates 

rv     Distance from earth center to satellite 

Distance from earth center to sun 

m Distance from earth center to moon 

Atmospheric density at altitude h 

p0     Sea level atmospheric density 

ß      Altitude atmospheric density decay rate 

V, Magnitude of satellite velocity relative to 

rotating atmosphere 

rvs    Distance fron satellite to sun 

Tvxa Distance from satellite to moon 
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WE Earth rotation rate 

U      Matrix of second partials of gravity gradient with 

respect to satellite position in earth centered 

inertial coordinates 

u (i, j)  Element in ith row and j11" column of U 

U.     Matrix of second partials of gravity gradient with 
2T 

respect to satellite position in tracker coordinates 

(U2T = (cI)T u2i c| 

ü (i, j) Element in ith row and jth column of U2 , 

\1Q Sun's gravitational constant 

\x~ Moon's gravitational constant 

System F - Matrix 

Given the non-linear state equation: 

x(t) = fs(x(t), t) + Gc(t) wR(t) 'S,'w -s1 

F (t) 
s 

9 fs 
3x 2Ln(t) in 

C 

where xn(t) is the nominal reference state trajectory. 

Using the non-linear state equation defined in the summary to 

section II, the matrix Fs(t) is: 

120 

— ^ r-- .v.,--  ■ ■ - ■■ ■ •■-- ■•■--■ ■■ ^^^;:.-^-:.-:^- -..■■•  . .  . ■;, ■ . 1 ■ ^•ü^r^^\-*u^i^-diL£^'jf^^ 



msmfimmm vmm'uy^mmtmm'.m >. w&«!wnmm,!*^mwmwmwmv'''ww'>**^^ •^7«wswi^t^s^w^^w^^^^'v^.ww^ 

GA/LE/74-3 

FJ (8x8)   I 0(8 x 53) 

F2(6 x 8)     F3(G x 6)   '  F. (6 x 11)  ,  F,(6 x 36) 

0(47 x 14) 
,  F6(ll x 11) 

0(36 x 11) 

0(47 x 36) 

which is evaluated along xn(t).  The figures in brackets indicate the 

dimensions of the var-f DUS sub-matrices. 

0(3 x 3) 1(3 x 3) 0(3 x 2) 

:1     f2     f3     fu    ^5     0   !  h h 

f8     f9     f10    fll   f12    0  I   f13    fm 

f     f   '  f    f 
15    L16    L17    rl8   ri9 

0(2 x 8) 

f     f 
20     21 

where: 

f, = u(l, 1)  + 0.5 X7 Va 3 p Xl   (Xt, + WE Xo) 

0.5  X7 IvT p (X5 - U'E X,)(Xl4 + WF X2) 

Va 

m   +  3u0 (xs - X^
2  _ pj^ + 3uj)(xra - Xi)

2 

r
vsJ rvs5 vm r, ,5 
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f2     ■=     u(l,   2)     +      (0.5 XyVa   6  p  X2 (X.,     +    UT. X2) 

0.5 X7 WE  p   (X4    +    Iv^E X2)
2 1 [ 
 (    -    0.5  X7  p   UT: Va 

Va ' I 

3u0 (xG - X0(ys - X2) 

V3 

(3w feB-x1Hym-x2)l 

n^n—/ 

f        =     u(l,3)        +   j 0-5  X7  Va   ß   p   X3(X4     +     WE  'V 

0.5 X7 p  X3(X(+    +    WE X2) 

Va 

+   ( 3lJ0    ^s ' Xl)(zs - X3) 

r    5 '■vs 

+    )3lD (Xra " Xl>(ztn - X3) 

vm 

-Ö.5 X7  p   J 
(X4    +   TO x2)

2 

Va 

+    Va 

f       a       -0.5 X7  P     (X4    +    WE X2)(X5     -    WE X;) 

Va 

-0.5 p Va  (X4    +    TO X2) 

( 

f7    -       -4.5 x 10~7    fs 
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f8     ^       u(2,   1)     +      | 0^X7  Va  ß  p  X!   (X5    -    W XQ 

+   I 0.5 X7  V.T p     (X5    -    i,T Xj)2 

Va 

+     jo.5 X7  Va P  WE    + ■ ^0(ys  ' ^^s  " X_0   ' 

VS 

+ f3'^ (yra - X2)(xm - X!) 
) 7-1  
^ rvin 

f9    =    u(2,   2)      +   (0-5X7 Va  B  0  X2(X5    -    WE^X^) 

0.5 X7  Irt p(X5    -    V.T. XIHXJ,    +    WE X2) 

Va 

-Ta.      +       3y0 (ys - X2)
: 

r
vs ^ 

rvs5 r^3 

V 
V 

+       ^ 3^^ (ym " X2)' 

^vm 
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=      u(2j   3)    +   (0.5 X7 Va  P,  p  X3   (X5    -    UEXj) 
10 

0.5  X7  o  V.T X3   (X5     -    WE Xj) 

Va 

+ 3y0 (ys    -    X2)(zs     -    X3)   ) 

I r     5 

Svn (ym    -    x2) Um    ~    X3) 

'■vm 

;11 
(Xi,    +    TOXgXXs    -    TO Xj)   0.5 X7 p 

Va 

12 
-0.5 X7 p       (X5    -    WEXl)2       +    Va 

Va 

13 -0.5    p Va   (X5    -    WE Xj) 

•m •4.5 x lO-7    ys 

f15    =     u (3,  1)    + 
0.5 X7  B p Xi  Va X3 

+   j Q-5 x7  P  ^ X3(X5    -    WE X^) 

I Va 

+       3u0(Zs - X3)(xs  - Xl) 

vs 

3u   (zm - X3)(xm - Xi) 

Lvm 
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f16    -     u(3,   2)    +   _ 
0.5  X7   ß   p  X2  Va X3 

-v 

0.5 X7  p  m XaCXu    +    WE X2) 

Va 

3lJ0 (zs    ~   x3)(ys   ~   ^ 

rvs5 

+ 
Bu^Czn,    -    X3)(yn    -    X2) 

Lvin 

=     u(3>   3)    +   ( 0.5 X7   B  p  Va X32  \   _      0.5 X7 p  X3^ 

Va 

0.5 X7  p  Va    - 
rvs3 

3V^ (zs    -    X3)2 

rvs' 

JiX      +3^ (zra    -    X3)2 

"vm 
+    JPJ)  v"ra 

rvm" 

f18    =    -0.5 X7 p(X4    +    V/E X2)  X3 

Va 

f        _    -0.5 X7 p(X5    -    VJE Xi)  X3 
r 19     '       _  

Va 

f20    -    -0.5  p Va X3 
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-A.5  x  10" zs 

8l 

% % 

0(3 x  3) 

0(6  x  5) 

where; 

-u     (3,  1) 6c  G   (1,   1) 

R 

-ü     (3,  2) 6e  u   (1,   2) 

R       ' =    '        R 

=    -ü     (3,  3)       _     6c  0   (1,   3) 

R R 

V 

-ü    (2,  1) 5n ü  (1,  1) 
R 

-G    (2,  2) 6n ü   (1,  2) 

-ü    (2,  3) 6n G   (1,   3) 
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g7 = u (1, 1) + in u (2, 1)  -  6E G (3, 1) 

B8 - a (1, 2) + 6n ü (2, 2)  -  6c u (3, 2) 

g9    =    ü   (1,   3)    +    6n u  (2,   3)    --    6c  u  (3,  3) 
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(6  x  6) (6  x  6) (6 x 6) (6  x  7) (6  x  7)       (6  x  A) 

c 
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-J c 
3 »o 
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N: >- O X 
cr. c^ E- 

3^ 
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1 
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N 
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H < N tsl < H H < < > 
N t/3 UJ c 

^ 1 
"O 

3 1 

t^ >* >- >< 
H H H H < < < < 

u cr 
N tM KD K3 xn CO | 

►J ►J 
3 3 

1 

X X X 
X H H H 

H < < -a: < 
u cr 

5H ■o "O 
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1 

r in 
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WLSZ 
WTX 

-6e a)Tx 

6ri a;LS7 
W
T 

0 

52 

-63 

36 

-^7 

39 

-ßio 

-ß "J 

LSZ   z 

6c "LSy WTZ 

-w,. 

It should be noted that each element in each of the above sub- 

matrices is evaluated along the nominal reference trajectory x^t). 
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System Qc - matrix and Gs - matrix 

If Qj is the variance of the w'nite noise Wj driving the state 

ec;i ition for X^ , 02 is the variance for V'2 and 03 is the variance for 

W3, then: 

Q,   0   0   ' 

and G is given by: 

0    q2       0 

0    0 

0(11 x 3) 

0(3 x 11) 

1(11 x 11) 

0(3 x 3)   I 

1(3 x 3) 

0(55 x J) 

\2ßi   0l 

0(14 x 11) 

V^T 
yßs 3  03 

0(36 x 11) 

N 

yfzfn   au 
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System Hs - matrix and R0 - matrix 

Given the non-linear measurement eauation; 

fs^i)  = ts^ti), ti) + vs(ti) 

9j}g 

3x 2^(0 Zn 

wnere x (t) is the nominal reference state trajectory. 

Using the non-linear measurement equations defired in the summary 

to section II, and defining the components of z
s(ti) as: 

"Y 

i.^i) = 

u. 
Mz 

\ 

-M 

and assuming the constants K , K , and KR are all unity, then Hs(t) Is 

given by; 

Hs(t) = "si 
(5 x 16) 

Hs S2 
(5 x 10) 

H 
S3 

(5 x 11) 

( 
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and Rs is given by; 

s3 

and R  is the variance of V, 
1 ^ 

Rs  is the variance of V? 
2 J 

Rs is the variance of V7 

Rq  is the variance of V 8 

s 
V 

Rs  is the variance of Vg 

!Jote also that the above ng matrix is evaluated along xn(t) 
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Appendix C 

Linearization of Filter Model Stnte and Measurmnent Equations 

Definitions; 

X , X0, X,  Inertial satellite position vector 

X , >' , X  Inertial satellite velocit 
A   J   o v vector 

rv     Distance fron earth center to satellite 

U2      Matrix of 2nd partials of gravity gradient 
I 

with respect to satellite position in earth 

centered inertia! coordinates 

u(i, j)   Eleraent in 1  row and j1-'1 column of U2 

1 

U,.      Matrix of 2nd partials of gravity gradient 

with respect to satellite position in tracker 

coordinates 

uCi, j)   Element in ith row and j11*1 column of U, 

'© Earth's gravitational constant 

Filter Model F - matrix 

Using the non-linear state equations defined in the summary to 

section V, the filter model F - matrix denoted F„ is given by: 

Fl 
(6 x 6) 

F, 
(6 x 6) 

0 
(6 x 6) 

F3 
(6 x 6) 
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which  is  evaluated  alonp  x   (r)       Thn   f„„-^     J     i 
h ^n^/-     Hie   Ufiurcs   in  brackets  -indicate   the 

dimensions  of   tiiu  sub-tnatrices. 

0 
(3  x  3) 

021 (3 xS) 

I 
(3 X 

0 

3) 

(3 X 3) 

where,' 

3       .     3v,mX12 
r   3 rv 

3ii^X2X1 

^   5 

^©   X3X! 

ry5 

3M@XIX2 

^   5 

^+    ^X^ 

3liQ   XgX? 

r   5 

3p@   X1X3 

rv5 

3u0 X2X3 

rv5 

. 3' + -!j©_ii X:2 

r 

-1,(3,   1) 
R 

5   (2.   1) 
R 

L 

-Ü   (3.   2) 
R 

Ü   (2,   2) 
R 

0(3 x  3) 

■u   (3,  3) 

5   (2,   3) 
R 

"(!>  1) u(l,  2) G(l,   3) 

I 

"1 

0 
(6 x 3) 
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CM 
I 

BS 

to 
to 

CM 
I 

U 

u 
> 

(M 

H u 
< 

i 

N 
to 
-J 

3 

CM 

to 

3 

x 

H 
3 

H 
3 

> 
(N 

I 

Di O 
N 

to 
3^ 

cs 

u X > EH 
Bä 3 

CN 
1 

1 

CS4 

( 
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Filter Model 0  and GF Matrices 

Let QF be defined as the covariance matrix E L(t)   J(c) 

where; 

w(t) 

W2 

w,, 

w. 

W, to W, are independent Gaussian white noise processes so that 

QF is a diagonal 6x6 matrix and: 

4 x 10 
_6 

A x 10~6 

4 x 10 6 

1 x 10 -22 

1 x 10-22 

2-5 x 10 -9 

0 
(3 x 3) 

(3 x 3) 

0 
(6 x 3) 

0 
(6 x 2) 

i 

(2 x 2) 

0 
(A x 2) 

J 
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Filter Model MF  and  Rv Matri cos 

Let RF be the covariance matrix E   v(t) vT(t:)   where 

v(0 

The elements of the vector are independent Gaussian white noise 

processes so that R is a diagonal 5x5 matrix and: 

2-5 x lO"12 

2-5 x lO"12 

6 x lO-12 

6 x 10-12 

450 

where the figures are derived usin* the t 
ruth model data set in Appendix 

Ü.  UF is the 5x5 identi ty matrix. 
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Appendix D 

Initial Truth MoJel Simulation Parameters 

The following simulation parameters are used initially in the 

truth model measurcmert equations. 

Rate Gyro Heasurements 

The figures are based on Ref. 15, page 302 representing a typical 

aircraft gyro. 

Quantity 

Gyro drift 

Gyro scale factors 

Gvro mass unbalance 

coefficients 

Gyro misalignment 
coefficients 

Additive white noise 

Steady State 
Standard Deviation 

1 x 10 6 rad/sec 

5 x lO-4 

3 x lO-6 rad-sec/m 

1 x 10-u 

1 x lO"9 rad/sec 

Process 
Correlation Time 

1 hr 

0 

The gyro drift correlation time is typically much larger then 1 hour. 

The time was reduced to 1 hour to model a worst case drift.  The mis- 

alignment coefficients have been approximately estimated and the white 

noise is based on uncertainty in the gyvo drift. 

Acceleroci'iter Measurements 

The figures art based on Ref. 15, page 291, representing a typical 

acclerometer. 

1A8 
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Quantity 
Steady State 

Standard Deviation 
Process 

Corri'Lition   Time 

Acceleroir.eter drift 

Accelerometer  scale  factors 

7 
Accaleroneter g" non-linear 

coefficients 

Accelerometcr g non-linear 
coefficients 

Acceleroraeter nisalignment 
coefficients 

Additive white noise 

0.05 m/nec2 

] x 10~3 

1 x 10~3 sec2/ni 

2 x 10-^ sec4/in2 

5 x IQ"14 

1 x 10" n/sec2 

1 hr 

0 

where the acceleroneter drift process correlation tine has been reduced 

to 1 hour to represent worst case drift and the white noise results from 

the additive effects of dead zone, hysteresis and temperature effects. 

Angular Deviations 

The exact means of measuring angular deviations will vary depending 

on the type of tracking device employed.  The following figures are 

therefore approximately estimated as representative of a typical device. 

Quantity 
Steady State 

Standard Deviation 
Process 

Correlation Time 

Angle track 
scintillations 

Angle measurement 
scale factors 

Angle track bias 

Additive white noise 

1 x lO-13 rad 

lO-4 

2 x IG-6 rad 

1 x 10~G rad 

10 sec 

300 sec 
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Range  Mca.surcment 

Ayain,   the  range measurement  paranett.rs v/111  vary depending  on   t'ru 

device  used.     The  following  fip.uros  are   therefore  approximately esti- 

mated  as  representative    of  a  typical  device. 

Quantity 

Range  scintillation 

Range bias 

Additive white noise 

Steady  State 
Standard Deviation 

20 m 

5 m 

5 m 

Process 
Corrclation Time 

10 sec 
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